c\ MICROCHIP

Driver Libraries Help

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.

Volume V: MPLAB Harmony Framework

Volume V: MPLAB Harmony Framework Reference

This volume provides API reference information for the framework libraries included in your installation of MPLAB Harmony.

Description
This volume is a programmer reference that details the interfaces to the libraries that comprise MPLAB Harmony and
m explains how to use the libraries individually to accomplish the tasks for which they were designed.
HARMONY

-

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

Driver Libraries Help

This section provides descriptions of the Driver libraries that are available in MPLAB Harmony.

Driver Library Overview

This topic provides help for the MPLAB Harmony driver libraries. It includes a general driver usage overview, as well as sections providing a
programmer’s reference for each driver that describes its interface and explains how to use it.

Introduction
Introduces MPLAB Harmony device drivers and explains common usage concepts.

Description

MPLAB Harmony device drivers (usually referred to as "drivers") provide simple, highly abstracted C-language interfaces to peripherals and other
resources. A driver's interface allows applications and other client modules to easily interact with the peripheral it controls using consistent usage
models. Some functions are similar on all drivers, while other functions are unigue to a particular type of driver or peripheral. However, driver
interface functions are generally independent of the details of how a given peripheral is implemented on any specific hardware or of how many
instances of that peripheral exist in a given system.

Drivers normally utilize MPLAB Harmony Peripheral Libraries (PLIBs) to access and control peripheral hardware that is built into the processor
(and is directly addressable by it). However, drivers can also support external peripheral hardware by calling another driver that directly controls a
built-in peripheral to which the external peripheral is connected. For example, an SD Card driver may use a SPI driver to access its external SD
Card Flash device. A driver may even be completely abstracted away from any hardware (utilizing no peripheral hardware at all), simply controlling
some software resource (such as a buffer queue) or providing some service (such as data formatting or encryption). Using this method, driver and
other modules may be "stacked" into layers of software, with each responsible for the details of managing its own resources while hiding those
details from client modules that use them.

Regardless of the type of peripheral or resource that a MPLAB Harmony driver manages, a driver has the following fundamental responsibilities:

Provide a common system-level interface to the resource
Provide a highly abstracted file system style client interface to the resource
Manage the state of the peripheral or resource

+ Manage access to the resource

A driver’s system interface can be thought of as being a horizontal interface and its client interface can be thought of as being a vertical interface,
as shown in the following block diagram.

System Client

| Write(..) |

| —

| Open(..) |
e Sttt T2

main ()

| Initialize(..)

Driver

_ISR()

PLIB

The horizontal or "system" interface provides functions to initialize the driver and keep it running. To keep a driver running, a system loop or ISR
function (but never both in the same system) calls its state machine "tasks" function repeatedly, as necessary. Therefore, a driver’'s system
interface is normally only called by code that is generated by the MPLAB Harmony Configurator (MHC) when you select and configure the driver.
Its purpose is to ensure that the driver works independently (conceptually in the background), providing the capabilities it implements. By contrast,
the application (or any other "client" of the driver) normally only interacts with the driver’s vertical "client" interface (often thought of as the driver's
API). The client interface provides functions to open the driver for use and interact with it, reading or writing data or performing device-type specific
operations. The client interface is what allows the application to access the peripheral in a safe and easy way without worrying about the details of
the driver or what other clients it may be serving.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 3

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

The following sections describe in general terms how to use these two interfaces and give specific examples to help illustrate the concepts. The
subsequent help sections for each individual driver describe their specific interfaces in detail; listing all supported functions, parameters, and return
values as well as their data types and expected behavior. You may also refer to the MPLAB Harmony Driver Development guide for additional
information on MPLAB Harmony drivers and for information on how to develop your own drivers, if needed.

Using a Driver's System Interface
Introduces the System Interface of a MPLAB Harmony device driver and explains its usage.

Description

An MPLAB Harmony driver's system interface provides functions to initialize, deinitialize, and reinitialize an instance of a driver, as well as
functions to maintain its state machine (and/or implement its Interrupt Service Routine) and check its current "running" status. Normally, as an
MPLAB Harmony application developer or a developer of a "client" module that uses the driver, you will not call the system interface functions
directly. The MHC generates calls to the system interface functions of any driver that is used in a project when it generates the system
configuration files. Exactly which functions are called and exactly how they’re called depends on the configuration options selected in the project’s
active configuration.

For example, when the box next to “Use Timer Driver?” is selected in the MHC Options tree (within MPLAB Harmony & Application Configuration >
Harmony Framework Configuration > Drivers > Timer), as shown in the following figure, the MHC will generate all necessary definitions and
function calls for the Timer Driver's system interface.

Example Timer Driver MHC Options

Timer
-} |¥| Use Timer Driver?

Driver Implementation DYNAMIC v

V| Interrupt Mode
Number of Timer Driver Instances |1
=)+ |¥| TMR Driver Instance 0
Timer Module ID TMR_ID_1 v
Interrupt Priority | INT_PRIORITY_LEVEL1 v
Interrupt Sub-priority INT_SUBPRIORITY_LEVELD «
Clock Source |DRV_TMR_CLKSOURCE_INTERNAL v
Prescale TMR_PRESCALE_VALUE_256 «
Asynchrounous Write Mode Enable

Power State |SYS_MODULE_POWER_RUN_FULL v
These configuration selections, which are set by default once "Use Timer Driver" is selected, will cause the MHC to generate the following
definitions in the syst em confi g. h header file for the main project’s current configuration when Generate Code is clicked.

Example Driver Options in system_config.h
[*** Timer Driver Configuration ***/

#defi ne DRV_TMR_I NTERRUPT_MODE true
#defi ne DRV_TMR_I NSTANCES_NUMBER 1
#def i ne DRV_TMR_CLI ENTS_NUMBER 1

[*** Timer Driver 0 Configuration ***/

#def i ne DRV_TMR_PERI PHERAL | D_| DX0 TMR 1D 1

#define DRV_TMR | NTERRUPT SOURCE_| DX0 | NT_SOURCE_TI MER 1

#def i ne DRV_TMR_CLOCK_SOURCE_| DX0 DRV_TMR_CLKSOURCE_| NTERNAL
#def i ne DRV_TMR_PRESCALE_| DX0 TMR_PRESCALE_VALUE_256

#def i ne DRV_TMR_OPERATI ON_MODE_| DX0 DRV_TMR_OPERATI ON_MODE_16_BI T
#def i ne DRV_TMR_ASYNC WRI TE_ENABLE | DX0 fal se

#define DRV_TMR POAER STATE | DXO SYS_MODULE_POAER RUN_FULL

It is important to notice that the Driver Implementation selection in the MHC graphical interface does not correlate to a #def i ne statement in the
system confi g. h file. Instead, it determines which implementation of the driver this configuration will use. Drivers may have more than one
implementation. For example, most drivers have both static and dynamic implementations. A static implementation is usually the smaller of the
two, but it is only capable of controlling one instance of a peripheral. An equivalent dynamic implementation will be larger, but it is capable of
managing multiple instances of the same type of peripheral using a single instance of the source code (and thus, one instance of the object code).
Some drivers may have additional implementations, each one optimized for a different usage. The Driver Implementation pull-down control in the
MHC graphical interface allows you to select which implementation the current configuration will use. Normally, you can use only a single
implementation of a driver in a given configuration. If you change driver implementations, it changes which implementation is used for all all
instances of a peripheral.

The number of instances option, for example, Number of Timer Driver Instances, which correlates to the DRV_TMR_INSTANCES_NUMBER
definition, determines how many instances of a static driver implementation will be generated or how many instances of a peripheral a dynamic
driver implementation will manage. Drivers may also be designed to allow multiple different clients (applications or other modules) to share the
same instance of a peripheral or resource. Therefore, a driver will have an option to determine a maximum number of simultaneous clients that it

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 4

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

can support. For example, Number of Clients (DRV_TMR_CLIENTS_NUMBER) in the Timer Driver, which is fixed at one (1) and cannot be
changed, which indicates that the Timer Driver is a single-client driver). The last implementation-specific configuration option in this example is the
"Interrupt Mode" (DRV_TMR_INTERRUPT_MODE) setting. This option determines if the implementation is configured to run polled or interrupt
driven (discussed further, in a following section). MPLAB Harmony drivers are generally designed to run most effectively in an interrupt-driven
configuration, but they can also be run in a polled configuration to simplify debugging or to support task prioritization in an RTOS configuration.

The remaining configuration options are all instance-specific initialization options. For a dynamic implementation of a driver, these options are
passed into the driver’s Initialize function through an "init" data structure, as shown in the following example.

Example Driver Init Structure in system_init.c
const DRV.TMR INIT drvTnrOlnitData =

{
. modul el ni t.sys. power State = DRV_TMR_POAER_STATE_| DXO,
.tnr1d = DRV_TMR_PERI PHERAL_| D_I DXO,
.cl ockSource = DRV_TMR_CLOCK_SOURCE_| DX0,
.prescal e = DRV_TMR_PRESCALE_I| DX0,
.node = DRV_TMR_OPERATI ON_MODE_16_BI T,
.interruptSource = DRV_TMR_| NTERRUPT_SOURCE_| DXO,
.asyncWiteEnable = fal se,

b

The exact meaning and usage of these options are described in the Configuring the Library section in the Help documentation for each library.
The live MHC Help windowpane displays the associated help section whenever you select one of these options in the options tree.

There is one instance-specific initialization option of which you should take special notice: the peripheral ID option (.tmrld, in the Timer Driver
example shown). This initialization option associates the driver instance (a zero-based index number) with the peripheral-hardware instance
number, as defined by the data sheet for the processor in use. For a dynamic driver, this association is actually made when the driver’s initialize
function is called and passes a pointer to the init data structure, as shown in the following code example.

Example Driver Initialize Call in system_init.c

/* Initialize Drivers */

sysQbj .drvTnr0 = DRV_.TMR I nitialize(DRV_TMR | NDEX 0, (SYS MODULE INIT *)&drvTnr Ol nitData);

In this example, the driver index (DRV_TMR_INDEX_0) is defined as a numeric constant with a value of zero (0). This line of code associates
driver instance 0 with hardware timer instance 1 by calling the DRV_TMR_Initialize function from the system initialization code and passing a
pointer to the dr vTnr Ol ni t Dat a structure. As shown earlier, the Timer Driver’s init structure contains the value TMR_ID_1 (defined by the timer
peripheral library), inits . t nt | d data member.

In a static implementation, the driver peripheral ID macro (DRV_TMR_PERIPHERAL_ID_IDX0) defined in syst em confi g. h is hard-coded into
the driver’s instance-specific initialization function when it is generated by the MHC, instead of defining an "init" structure, as shown in the following
example; however, the effect is the same.

Example Static Driver Initialize Function
void DRV_TMRO_Initialize(void)

{
PLI B_TMR St op(DRV_TMR_PERI PHERAL | D_| DX0) ;
PLI B_TMR_O ockSour ceSel ect (DRV_TMR_PERI PHERAL_| D_| DX0, DRV_TMR_CLOCK_SOURCE_| DX0) ;
PLI B_TMR_Prescal eSel ect (DRV_TMR_PERI PHERAL_| D_I DX0, DRV_TMR_PRESCALE_| DX0) ;
PLI B_TMR_Mbde16Bi t Enabl e(DRV_TMR_PERI PHERAL_| D_| DX0) ;
PLI B_TMR Count er 16Bi t Ol ear (DRV_TMR_PERI PHERAL | D_| DX0) ;
PLI B_TMR Peri 0d16Bi t Set (DRV_TMR_PERI PHERAL_| D_| DX0, 0);
}

The DRV_TMRO_Initialize function (with an instance number ‘0’ in the name) in the previous example, is a static version of the
DRV_TMR_Initialize system interface function. The call to this function is created by the MHC when it generates the system code. Therefore, that
call is always generated with the correct name and with the correct instance number in the name. However, when calling client interface functions
(open, close, read, write, etc.) from your own applications, you should not use an instance number in the function name. Dynamic drivers
implement the client interface functions without any index numbers in their names. Instead, they use an index or handle parameter to identify the
instance of the driver with which to interact. Also, when using static implementations of the drivers, the dynamic API functions are mapped (using
the index or handle parameter) to the appropriate static function with the index number in its name. Therefore, calling the dynamic API function
makes your application always portable, using whichever driver instance is configured to the index value with which you open the driver.

Calling the static versions of the interface function (with the index numbers in their names) is not prohibited. However, it will limit
Note: the portability of your application.

Understanding this mechanism is critical to understanding how to access the desired peripheral hardware instance. Therefore, it is worth looking at
a few demonstration applications to see how it is used. Also, refer to Volume IV: MPLAB Harmony Development > Key Concepts > Key
One-to-Many Relationships for additional information on the concepts of having multiple implementations, instances, and clients.

Something else worth noting about the previous example call to the Timer Driver’s initialize functions is that when using a dynamic implementation,
it returns a value called an “object handle”. In the previous example, that object handle was stored in a system configuration object data member
(sysQvj . dr vTnr 0). Object handles returned by module initialization functions are stored in a system configuration structure normally named
sysbj . The definition of this structure is generated in the syst em def i ni ti ons. h header file the MHC, as shown in the following example.
Example System Object Data Structure Definition in system_definitions.h

typedef struct

{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 5

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

SYS MODULE_OBJ sysDevcon;
SYS MODULE OBJ drvTnr0;

} SYSTEM OBJECTS;

extern SYSTEM OBJECTS sysvj ;

As shown in the previous example, this structure is “extern’d” for use by the other system files. It should not be used by application or library files,
only by the system files for a single configuration. The sysCbj structure is defined (and allocated in memory) by the syst em i ni t. c file, as
shown in the following example.

Example System sysObj Definition in system_init.c

/* Structure to hold the object handles for the nmobdules in the system */

SYSTEM OBJECTS sysvj ;

For this discussion, you can ignore the sysDevcon member of the SYSTEM_OBJECTS structure as it will contain the handle for a different library.
The important thing to note is that the dr vTnr 0 member must be passed into the Timer Driver’s other system interface functions so that the driver
has access to the data it needs manage that specific instance of itself (and the associated peripheral hardware), as shown by the following timer
ISR example.

Example Timer ISR in system_interrupt.c

void __ISR(_TIMER 1_VECTOR, ipl1AUTO) | ntHandl erDrvTnr | nstance0O(voi d)

{

}

In this ISR example, there are three important things to notice.

DRV_TMR Tasks(sysCbj.drvTnr 0);

First, the ISR function itself is associated with a specific vector through the __| SR macro. Different interrupt vectors are associated with different
peripheral instances and interrupts on different processors. That is why MPLAB Harmony ISR vector functions are generated in the
configuration-specific syst em i nt er r upt . c file instead of being part of the driver library itself.

Second, the DRV_TMR_Tasks function implements the actual ISR logic of the TMR driver. Most MPLAB Harmony drivers are designed to run
interrupt driven and their tasks functions implement the software state machine logic necessary to keep the driver’s interrupt sequence moving
from one interrupt to the next until the driver’s task is complete.

Third, the sysQbj . dr vTnr O object handle’s value is passed into the driver’s tasks function so that it has access to the data it requires to control
instance zero (0) of the Timer Driver and its associated hardware instance, which must match the ISR vector instance from which it is called.

By default, the Timer Driver is configured to run interrupt-driven, as shown previously. This is not necessarily true for all drivers. However, most
drivers (including the Timer Driver) can run in a Polled mode by simply changing the configuration settings. For example, by clearing the "Interrupt
Mode" option in the MHC configuration tree and regenerating the configuration code, the previous example ISR will be removed from
system.interrupt. c and a call to the Timer Driver’s tasks function will be added to the polled system tasks function, as shown by the following
syst em t asks. c example code.
Example Call to Timer Tasks from system_tasks.c
voi d SYS_Tasks (void)
{

/* Maintain system services */

SYS_DEVCON_Tasks(sysQbj . sysDevcon);

/* Maintain Device Drivers */
DRV_TMR Tasks(sysQbj . drvTnr 0);

/* Maintain the application's state machine. */

APP_Tasks();
}
In this example, the Timer Driver’s tasks function is called from the polled loop in main by the SYS_Tasks function. The driver’s tasks must still
receive the sysQbj . dr vTnr O object handle value and its logic operates in exactly the same way, with one exception. Because the driver is now
polled, the DRV_TMR_INTERRUPT_MODE option is now defined as false. This causes the driver to be built so that it does not enable its own
interrupt, allowing it to run in the polled loop and to not require an ISR.

For additional information on the device driver system interface, refer to Volume 1V: MPLAB Harmony Development > MPLAB Harmony Driver
Development Guide > System Interface and to the documentation for the individual system interface functions for the driver in question.

Using a Driver's Client Interface
Introduces the Client Interface (or API) of a MPLAB Harmony device driver and explains common usage models.

Description

Applications (or any other “client” of a MPLAB Harmony device driver) normally only interact with the driver’s client interface (often called its API).
The client interface provides functions to “open” the driver (creating a link between the client and the driver) and interact with it, to transfer data or
perform operations that are specific to a given type of device, and to “close” the driver (releasing the link). Once a driver has been configured and
the configuration code has been generated, the application can assume that the driver will be initialized by the system-wide initialization function
(SYS_lInitialize) and that its tasks functions will be called as required from either the system-wide tasks function (SYS_Tasks) or from the

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

appropriate ISR, depending upon how the driver was designed and configured.

To interact with the driver, a client must first call the driver's open function. This is necessary because all other client interface functions require a
“handle” to the device driver that is returned by the open function, as shown in the following example.

Example Call to a Driver’s Open Function
appDat a. handl eTnt = DRV_TMR_Open(APP_TMR_DRV_I NDEX, DRV_I O | NTENT_EXCLUSI VE) ;
i f(DRV_HANDLE | NVALI D ! = appDat a. handl eTnr)

/'l Advance to next application state.
}

In this example, the first parameter to the DRV_TMR_Open function is the APP_TMR_DRV_INDEX macro, which is a constant defined to the
value of the desired driver instance index number in the syst em confi g. h header file. This value must be the same as the index number used
when the desired driver was initialized (as shown in the previous section). This is how the client becomes associated with a specific instance of a
driver.

The second parameter identifies how the client intends to use the driver. Here, the client wants to have exclusive access to the driver. This means
that no other client can currently have an active handle to this driver or this call will fail and return a value of DRV_HANDLE_INVALID. Drivers can
also be opened as shared, as blocking or non-blocking and for reading, writing, or both. Refer to the help for the DRV_IO_INTENT data type for
additional information about the 10 intent parameter of driver open functions. This parameter is merely an advisory parameter. How it is used by
the driver is implementation dependent and will be described in the driver’'s help documentation.

Finally, if the open function was successful, the returned value will be a valid handle to the driver instance. This value is opaque and meaningless
to the caller, but it must be passed back to the driver as the first parameter to every other client interface function provided by the driver. A valid
handle identifies both the instance of the driver with which the caller interacts and it identifies the client performing the call. This means that, two
different client applications or modules opening the same driver in the same system at the same time will receive different values for their “opened”
handle. If, for any reason, the driver cannot support the “open” request (it is not finished initializing itself, it has already been opened for exclusive
access, or cannot accept new open requests for any reason), it will return a value of DRV_HANDLE_INVALID, indicating the client cannot use it at
this time. The DRV_HANDLE_INVALID value is the only non-opaque value that a client should consider meaningful. All other values are only
meaningful to the driver that provided them.

The appDat a. handl eTnr variable in the previous example is a member of the application’s appDat a structure. This structure is
Note: generated by the MHC as part of the initial application template and should be used to hold an applications state variables.

When the client is finished using a driver, it may close it, as shown in the following example.

Example Call to a Driver’s Close Function
DRV_TMR_Cl ose(appbat a. handl eTnr) ;

This action releases the link to the driver, invalidating the handle and releasing any resources allocated by the driver to track requests from the
client. Notice that the close function demonstrates the use of the driver handle, requiring it as a parameter. However, after the close function
returns, the handle value cannot be used again. Therefore, the client should not call the driver’s close function until it is done using the driver or it
will have to call open again and obtain a new handle to use the driver again. In fact, since many embedded applications are always running, they
often do not bother to close drivers they use. But, applications that can go idle or that can be stopped and restarted or that need to share a driver
with other clients, but want to conserve resources, or that want use the driver exclusively, can close a driver when they are finished with it for a
time and reopen it later when needed. In fact, this is a good way to share a single-client driver, or a driver that supports exclusive access, allowing
each client to open it and use it only when a valid handle is obtained.

Using a Driver in an Application
Describes how to write a state-machine based application that uses a MPLAB Harmony driver.

Description

MPLAB Harmony generally treats all software modules, including applications, as state machines that have an “initialize” function and a “tasks”
function. In fact, when not using a RTOS, it essentially treats the entire system as one large state machine that runs in a common super loop in the
“main” function, as shown in the following code example.

Example Main Function
int main (void)

{ SYS Initialize(NULL);
whi | e(true)
{ SYS _Tasks();
}
return (EXI T_FAI LURE);
}

For the purpose of this discussion, it is important to understand that the application’s APP_Initialize function is called from the SYS_Initialize
function, along with the initialization of functions of all drivers and other libraries before execution enters the endless whi | e(t r ue) super loop
that continuously calls the system-wide SYS_Tasks function. The application’s APP_Tasks function is then called from the SYS_Tasks function

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 7

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

inside of the super loop, along with all other polled modules in the system. If you are not already familiar with the organization of an MPLAB
Harmony project, please refer to Volume I: Getting Started With MPLAB Harmony > What is MPLAB Harmony? for more information.

An application that uses a driver must define a DRV_HANDLE variable, as shown in the following example application header file.

Example Driver Application Header (app.h)
#include "driver/usart/drv_usart.h"

typedef enum

{
APP_STATE_SETUP=0,
APP_STATE_MESSAGE_SEND,
APP_STATE_MESSAGE_WAI T,
APP_STATE_DONE

} APP_STATES;

typedef struct

{
APP_STATES st ate;
DRV_HANDLE wusart;
char * nmessage;
} APP_DATA;

In this previous example, the driver handle variable is named usart . To keep the application well organized, it is common to keep all of the
application’s state variables (including one called “state” that holds the current state of the application’s state machine) in a common structure
(APP_DATA). This structure must be allocated in the application’s source file (usually named app. ¢) and initialized by the application’s
initialization function, as shown in the following example.

Example Driver Application Initialization
APP_DATA appbDat a;

void APP_Initialize (void)

{
/* Place the App in its initial state. */
appDat a. state = APP_STATE_SETUP;
appDat a. usart = DRV_HANDLE_ | NVALI D;
appDat a. ressage = “Hello World\n”;

}

The APP_Initialze function must initialize the state variable (appData.state) to put the application’s state machine in its initial state (the
APP_STATE_SETUP value from the APP_STATES enumeration). It must also initialize the driver-handle variable (appDat a. usart), so that the
state machine knows it is not yet valid, and any other application variables (like the string pointer, appDat a. nessage).

Once the application’s data structure has been initialized, it is safe for the system (the main and SYS_Tasks functions) to call the application’s
APP_Tasks function from the super loop to keep it running. The APP_Tasks function then executes state transition code as it switches between
states, as demonstrated by the following example.

Example Application State Machine Using a Driver
voi d APP_Tasks (void)

{
switch (appData.state)
{
case APP_STATE_SETUP:
{
if (SetupApplication() == true)
{
appDat a. state = APP_STATE_MESSAGE_SEND;
}
br eak;
}
case APP_STATE MESSAGE SEND:
{
if (MessageSend() == true)
{
appDat a. state = APP_STATE_MESSAGE_WAI T,
}
br eak;
}

case APP_STATE MESSAGE_WAI T

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 8

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

{ if (MessageConpl ete() == true)
{ appDat a. state = APP_STATE_DONE;
}
br eak;
}
case APP_STATE_DONE:
defaul t:
{
br eak;
}

}

There are numerous ways to implement a state machine. However, in this example, the application changes state when the APP_Tasks function
assigns a new value from the APP_STATES enumeration to the appDat a. st at es variable. This happens when one of the state transition
function returns true. The end result is an overall application state machine execution that retries each state transition until it succeeds before
moving on to the next state, as shown in the following diagram.

Application State Machine

APP_Initialize()

SetupApplication() == true
y SETUP
>»
SetupApplication() != true ; MessageSend() == true
-y MESSAGE
7\ SEND
P
MessageSend() !'= true J—
MESSAGE MessageComplete () true
WAIT
>
MessageComplete() != true
w9 DONE
>

The APP_STATE_ prefix and all inter-word underscores were removed from the state names to simplify the diagram.
Note:

After APP_lInitialize places the state machine in its initial APP_STATE_SETUP state, the APP_Tasks function will call the SetupApplication
function when it is called. When SetupApplication returns true indicating it has completed its task, the state machine advances to the next state.
Otherwise, it stays in the same state and retries the tasks in the SetupApplication function. This pattern repeats for the
APP_STATE_MESSAGE_SEND state and the MessageSend function as well as the APP_STATE_MESSAGE_WAIT state and the
MessageConpl et e function. When all functions have returned true, the state machine to transitions to the APP_STATE_DONE state where it
unconditionally stays having completed its tasks.

The sum total of the tasks performed by each transition function completes the overall task of the application. For an application that uses a driver
like this example, this includes opening the driver, sending the message, and closing the driver when the message has been sent. How each
individual transition function in this example application accomplishes its portion of the overall task, is described in the examples in the following
sections to demonstrate how drivers are commonly used.

Opening a Driver
Describes how to open a driver in a state-machine based application.

Description
To use a MPLAB Harmony driver, an application (or other client) must call the driver’s “open” function and obtain a valid handle to it, as shown by
the following code example.

Example Opening a Driver
static bool SetupApplication (void)

{
if (appData.usart == DRV_HANDLE_ | NVALI D)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 9

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

{

appDat a. usart = DRV_USART_Qpen(APP_USART_ DRI VER | NDEX,

(DRV_I O I NTENT_READWRI TE| DRV_| O | NTENT_NONBLOCKI NG)) ;

}
if (appData.usart == DRV_HANDLE | NVALI D)
{

return fal se;
}

return true;

}

This example demonstrates the implementation of a state-transition function in a state machine-based application (as shown in the previous Using
a Driver in an Application section). The Set upAppl i cat i on function assumes that the appDat a. usart variable has been initialized to a value
of DRV_HANDLE_INVALID when the application’s state machine was initialized. Therefore, it checks this variable every time it is called to see if it
has already completed its task. If appDat a. usart contains a value of DRV_HANDLE_INVALID, this indicates that the driver has not yet been
successfully opened, causing the function to attempt to open the driver by calling DRV_USART_Open.

If the USART driver is ready and able to support a new client it will return a valid handle. If it is not ready or able to accept a new client, the driver
will return DRV_HANDLE_INVALID and the Set upAppl i cat i on function will return false and the application will stay in the same state and try to
open the driver again the next time its state machine tasks function is called. When DRV_USART_Open returns a valid handle (a handle that is not
equal to DRV_HANDLE_INVALID), the Set upAppl i cat i on function returns true, allowing the application’s state machine to advance.

This technique allows the application to try repeatedly to open the driver until it succeeds and guarantees that the application’s state machine will
not advance until it has done so. A more sophisticated application might use a time-out mechanism or some other error handling logic to take
alternative action if it cannot open the driver in an acceptable time period. However, this simple implementation demonstrates the basic concept of
how an MPLAB Harmony application (or any other client module) can safely open a driver before attempting to use it.

Using Driver Interface Functions
Describes how to use a device driver's synchronous client interface functions, such as those that read and write data.

Description

To use a MPLAB Harmony driver’s client interface, the application must first obtain a valid handle from the driver's “open” function. The examples
in this section assume that that has already occurred and that the value of the USART driver handle in the appData.usart variable is valid. The
following example code demonstrates the implementation of a state transition function in a state machine-based application (as shown in the
previous Using a Driver in an Application section) that writes data to a USART driver for transmission on the associated USART peripheral.

Example Writing Data To a Driver
static bool MessageSend (void)

{
size_t count;
size_t length = strlen(appData. message);
count = DRV_USART Wite(appData.usart, appData.nessage, |ength);
appDat a. nressage += count;
if (count == |ength)
{
return true;
}
return fal se;
}

In this example, the appData.message variable is a char pointer pointing to a null-terminated C-language string that was defined and initialized, as
shown in the Using a Driver in an Application section. When MessageSend function is first called by the application’s state machine, it points to
the first character in the string to be transmitted. The function calculates the current length of the message string (using the standard C-language
strlen function) and calls the driver's DRV_USART_Write function, passing it the valid driver handle (appDat a. usar t) along with the pointer to
the message string and its length, to transmit the message string on the associated USART.

If the driver is configured for blocking, the DRV_USART_Write function will not return until it has processed all of the data in the message string.
However, that usually requires the use of a RTOS. Normally, in a bare-metal system (one that does not use a RTOS), MPLAB Harmony drivers
are used in a non-blocking mode. In that case, a driver will perform as much of a task as it can when one of its interface functions is called without
blocking. This means that the function will then return immediately, not waiting for the task to complete, and provide information on how much of
the task was completed so the client can react appropriately. In this example, the DRV_USART_Write function will return a count of the number of
bytes that were processed by the USART driver by this call to the function.

The MessageSend function captures the number of bytes processed by the DRV_USART_Write function in a local count variable. It then
effectively removes those bytes from the message string by incrementing the pointer by count bytes (appDat a. nessage is a char pointer that
increments by the size of one byte for every ‘1’ added to it). Then, the MessageSend function checks to see if it was able to write the entire string

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

by comparing the value of count to the value of length that it calculated before calling the driver's write function. If the two are equal, the task is
complete and the MessageSend function returns true and the application’s state machine can continue to the next state. If the two values are not
equal, this indicates there are remaining bytes in the message string. The MessageSend function returns false and the application must stay in the
same state so that the function can attempt to send the remaining bytes next time it is called. A driver only accepts data when it can process it;
therefore, the client can call its data transfer function as many times as necessary, even when the function returns bytes processed if it cannot
accept more data at that time.

When a client has called a driver interface function there are really only two possibilities. Either the operation has completed when the function
returns, or the operation continues after the function has returned. If the operation completes immediately, the client can continue on without taking
further action. However, in this example, while the USART driver may have accepted some of the bytes in the message string (perhaps copying
them to an internal hardware or software FIFO buffer), it still takes some time to transmit the data over the USART peripheral. In many cases the
client may need to know when the operation has actually completed. For this reason, most drivers provide one or more status functions that client
applications may call to determine the current status of an operation, as demonstrated in the following example.

Example Using a Driver Status Function
static bool MessageConplete (void)

{
if (DRV_USART_C i ent Status(appData.usart) == DRV_USART_CLI ENT_STATUS_BUSY)
{
return fal se;
}
return true;
}

This example extends the previous one and assumes that the MessageSend function has returned true and the application has moved to a new
state where it calls this function to determine when the driver is idle, which indicates that the message has been completely transmitted. To do
that, the MessageConpl et e function calls the DRV_USART _ClientStatus function. If its return value is DRV_USART_CLIENT_STATUS_BUSY,
the USART driver is still working on a previous request by the client. If any other status value is returned, this indicates that the driver is no longer
busy with a current request and the MessageConpl et e function returns true so that the client application’s state machine can move on. A more
sophisticated example would check for other possible status values that might indicate some error has occurred and take appropriate action.
However, this example is sufficient to demonstrate the concept of checking a driver status function to determine when it is safe to move to another
state.

Since the client application stays in the same state calling the status function each time its tasks function is called until the desired status is
returned, it is effectively polling the status as if it were in a whi | e loop. In fact, it is in the system-wide while loop. However, by not trapping the
CPU within its own internal whi | e loop, the application allows other modules (including, potentially, the driver it is using) to continue running and
servicing requests. Failing to allow the rest of the system to run can result in a deadlock where the polling application is waiting for a status;
however, the driver it is polling will never be able to provide the expected status, as the driver’s own tasks function is not allowed to run. This is
why it is important to use the technique described here to “poll” status from modules outside of the current module.

Using Asynchronous and Callback Functions
Describes how to use an asynchronous interface function to start a driver operation and receive a callback when the operation is complete.

Description

When a client calls a function that is part of an asynchronous interface, the function starts the request and returns immediately, without finishing
the request. The client can then either poll a status function to determine when the request has finished (as demonstrated in the Using Driver
Interface Functions section) or it can utilize a callback function to receive a notification from the driver when the request has finished. So, the
difference between an asynchronous interface and a synchronous interface is that a synchronous interface may finish all or part of the request
before returning, whereas an asynchronous interface will always return immediately having only started the request. Determination of when the
request has completed is handled separately.

The examples in this section reimplement some of the code from the example application described in the previous sections to demonstrate how
to use asynchronous queuing and callback interfaces instead of the synchronous status-polling interface demonstrated in the Using Driver
Interface Functions section. To use an asynchronous interface, we will first add a couple of new variables to our example application’s data
structure, as shown by the following structure definition.

Example Driver Application Header (app.h)
typedef struct

{
APP_STATES state;
DRV_HANDLE usart;
char * nmessage;
DRV_USART_BUFFER_HANDLE nessageHandl e;
bool nmessageDone;

} APP_DATA;

The st at e, usart, and mnessage members of the APP_DATA structure are used in exactly the same way as they were in the previous examples.
The messageHand| e variable will be explained later and the mnessageDone variable is a Boolean flag used by the callback function to indicate to
the application’s state machine that the message has been completely processed by the driver. Using these new mechanisms results in very minor
changes to the application’s state machine, as shown in the following example APP_I ni ti al i ze and APP_Tasks implementations.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 11

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

Example Driver Application State Machine (app.c)
void APP_Initialize (void)

{
appDat a. state = APP_STATE_SETUP;
appDat a. usart = DRV_HANDLE_I| NVALI D;
appDat a. nessage = APP_MESSAGE;
appDat a. mressageHandl e = DRV_USART_BUFFER_HANDLE_ | NVALI D;
}
voi d APP_Tasks (void)
{
switch (appData.state)
{
case APP_STATE_SETUP:
{
if (SetupApplication() == true)
{
appDat a. state = APP_STATE_MESSAGE_SEND;
}
br eak;
}
case APP_STATE MESSAGE_SEND:
{
if (MessageSend() == true)
{
appDat a. state = APP_STATE_MESSAGE_VAI T,
}
br eak;
}
case APP_STATE MESSAGE WAI T:
{
i f (appData. nessageDone)
{
DRV_USART_C ose(appDat a. usart);
appDat a. state = APP_STATE_DONE;
}
br eak;
}
case APP_STATE_DONE:
defaul t:
{
br eak;
}
}
}

As described previously, the Set upAppl i cat i on state transition function opens the USART driver and the MessageSend function sends the
message to it. However, there is no need for a MessageConpl et e state transition function. Instead, the application must implement a callback
function that will set the appDat a. mressageDone Boolean flag when the driver calls the application "back" to indicate that the message has been
sent.

The Appl ni ti al i ze function initializes the st at e, usar t , and nessage members of the appDat a structure as previously

Note: described. And, it also initializes the messageHandl e member with an invalid value to indicate that the message has not yet been
sent. However, it does not initialize the messageDone flag because it is more appropriate to clear the flag elsewhere, immediately
before calling the driver to send the message.

To use a callback mechanism requires the client to implement and register a callback function. A client must register this function after opening the
driver, but prior to calling the driver to initiate the operation. This is often done in the same state transition that opens the driver, as shown in the
following Set upAppl i cat i on example.
Example Registering a Driver Callback Function
static void BufferDone (DRV_USART_BUFFER _EVENT event,

DRV_USART_BUFFER HANDLE buf f er Handl e,

uintptr_t context)

APP_DATA *pAppData = (APP_DATA *)cont ext;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 12

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

if (event == DRV_USART BUFFER EVENT COMPLETE)

{
i f (bufferHandl e == pAppDat a- >messageHand| e)
{
pAppDat a- >nmessageDone = true;
return;
}
}
/* Error */
return;

static bool SetupApplication (void)

{
if (appData.usart == DRV_HANDLE_| NVALI D)
appDat a. usart = DRV_USART_Open(APP_USART_DRI VER_I| NDEX,
(DRV_I O_| NTENT_READWRI TE| DRV_| O | NTENT_NONBLOCKI NG)) ;
}
if (appData.usart == DRV_HANDLE | NVALI D)
{
return fal se;
}
DRV_USART_Buf f er Event Handl er Set (appDat a. usart, BufferDone, (uintptr_t)&appData);
return true;
}

This code block implements both the Buf f er Done callback function and the application’'s Set upAppl i cat i on state transition function. After
successfully opening the driver, the Set upAppl i cat i on function calls the DRV_USART_BufferEventHandlerSet function and passes it the driver
handle (appDat a. usart) once it is valid, along with the address of the Buf f er Done callback function and a context value.

The context value can be anything that will fit in an integer large enough to hold a pointer (it is a ui nt pt r _t variable). However, this parameter is
most commonly used to pass a pointer to the caller's own data structure as demonstrated here (even though it is not strictly necessary). This is
done primarily to support multi-instance clients. (Refer to Volume IV: MPLAB Harmony Development > Key Concepts for information on multiple
instances.) A multi-instance client is designed to manage multiple instances of itself by allocating multiple instances of its own data structure, but
only one instance of its object code. Passing a pointer to the data structure in the context variable identifies the specific instance that was used
when calling the driver.

Once the callback function has been registered with the driver, the application can transition to a state where it attempts to initiate an
asynchronous operation. The following example demonstrates the use of a buffer-queuing write function to transmit a message over the USART.

Example Queuing a Buffer to a Driver
static bool MessageSend (void)

{
appDat a. messageDone = fal se;
DRV_USART_Buf fer AddW it e(appData. usart, &appData.nessageHandl e,
appDat a. nessage, strlen(appData. nessage));
i f (appData. nessageHandl e == DRV_USART_BUFFER_HANDLE | NVALI D)
{
return fal se;
}
return true;
}

Before attempting to send the message, this implementation of the MessageSend state transition function clears the appDat a. messageDone
flag so it can detect when the message has completed. Then, it calls the DRV_USART_BufferAddWrite function to queue up the buffer containing
the message to be transmitted by the USART driver. To that function, it passes the USART driver handle (appDat a. usar t), the address of the
appDat a. mressageHand| e variable, the pointer to the message buffer (appDat a. message), and the size of the buffer in bytes as calculated by
the st r | en function. The USART driver then adds this buffer to its internal queue of buffers to transmit and provides a handle to the caller that
identifies that buffer’s place in the queue by storing it to the appDat a. messageHandl e variable.

If, for some reason, the driver is unable to successfully queue up the buffer (perhaps the queue is full), it will assign a value of
DRV_USART_BUFFER_HANDLE_INVALID to the appDat a. messageHand| e variable. If that happens, the MessageSend function returns false
and the application will stay in the same state and retry the operation again next time its tasks function is called. But, if the operation succeeds, the
application advances to the next state.

Once the driver completes the operation, it will call the client’s callback function. As shown in the Buf f er Done code example, the driver passes it
an enumeration value that identifies which event has just occurred (the DRV_USART_BUFFER_EVENT_COVPLETE value) in the event parameter. It

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 13

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

also passes it the handle of the buffer that has just completed (buf f er Handl e). The client can use the buf f er Handl e value to verify that it
matches the value stored in the appDat a. buf f er Handl e variable to uniquely identify an individual buffer. This is very useful when a client
queues up multiple buffers at the same, which is being shown in this example as a demonstration.

The context parameter to the Buf f er Done function contains a pointer to the application’s global (appDat a) data structure. (This is the same
value that was passed in the context parameter to the DRV_USART_BufferEventHandlerSet function.) While not strictly necessary in this example,
it is very useful for multi-instance clients such as dynamic device drivers and middleware to identify which instance of the client requested the
operation. The callback function simply casts the context value back into a pointer to the client's own data structure’s data type (APP_DATA in this
example) and uses it to access the structure members. (Again, please refer to Volume IV: MPLAB Harmony Development > Key Concepts for
information on multiple instances.)

The callback function uses the event parameter to identify why the callback occurred. If it was called to indicate that the buffer has been
processed, the event parameter will contain the value DRV_USART_BUFFER_EVENT_COMPLETE. If it contains any other value an error has
occurred. The Buf f er Done callback also checks to verify that the buffer that completed was the same buffer that it queued up by comparing the
buf f er Handl e value it was passed with the value assigned to the appDat a. messageHand| e variable when the application called
DRV_USART_BufferAddWrite. It accesses the message handle value it saved using the pAppDat a pointer given to it through the context
parameter just. Once it has verified that the buffer it queued has completed, it sets the pAppDat a- >nessageDone flag to notify the application’s
state machine and execution returns to the driver.

It is important to understand that the MessageDone callback function executes in the context of the driver, not the application.
Note: Depending on how the system is configured, this means that it may be called from within the driver’s ISR context or from another
thread context if using a RTOS.

In this example, the APP_Tasks application state machine function is essentially the same as the state machine for the synchronous example.
The only difference is that when the application is in the APP_STATE_MESSAGE_WAI T state, it checks the appDat a. nessageDone flag to
determine when to close the driver and transition to the APP_STATE_DONE state instead of calling a transition function. (It could still do this in a
state transition function, but it was done differently in this example to emphasize the concept.)

The advantage of using an asynchronous interface over a synchronous one is that it allows the client’s state machine to continue on, potentially
doing something else while the requested operation completes. Whereas a synchronous interface has the possibility of blocking the client’s state
machine until the operation finishes (when used in a RTOS configuration). An asynchronous interface will always return immediately without
blocking (whether a RTOS is used or not). Because of this, most asynchronous interfaces will also allow queuing of more than one operation at a
time. This allows client applications to keep a driver continuously busy by keeping the driver’s queue full, maximizing data throughput or operation
speed. By contrast, a synchronous interface requires one operation to complete before the synchronous function can be called again to cause the
next one to begin.

The cost of this capability is that an asynchronous interface has the added complexity of a callback function (if the client cares when the operation
finishes) and the fact that a callback function may be called from within the driver’s ISR context, depending on how the driver was designed and
configured. This fact generally restricts what can be done within the callback function. For example, it is usually a bad idea to perform lengthy
processing within a callback function as it will block all lower priority ISRs (as well as the main loop or other threads) while that processing occurs.
Also, it is usually best to not call back into the driver's own interface functions unless those functions are documented as being safe to call from
within the driver’s callback context. Many interface functions (particularly data transfer and data queuing functions) must use semaphores or
mutexes to protect their internal data structures in RTOS environments and those constructs cannot be used from within an ISR.

It is also important to not make non-atomic (read-modify-write) accesses to the client's own state data from within the callback function, as the
client cannot protect itself against an interrupt that is owned by the driver. That is why a separate Boolean flag variable is commonly used to
indicate to the client that the callback has occurred. Most other processing should occur in the client’s state machine. It is usually best to simply
capture the event and return as quickly as possible from the callback function and let the application’s state machine tasks function perform any
lengthy processing or calling back into the driver.

Please refer to Volume IV: MPLAB Harmony Development for additional information.

Library Interface

Constants
Name Description
DRV_CONFIG_NOT_SUPPORTED Not supported configuration.
DRV_HANDLE_INVALID Invalid device handle.
DRV_IO_ISBLOCKING Returns if the 1/O intent provided is blocking
DRV_IO_ISEXCLUSIVE Returns if the I/O intent provided is non-blocking.
DRV_IO_ISNONBLOCKING Returns if the 1/O intent provided is hon-blocking.
_DRV_COMMON_H This is macro _DRV_COMMON_H.
_PLIB_UNSUPPORTED Abstracts the use of the unsupported attribute defined by the compiler.
Data Types
Name Description
DRV_CLIENT_STATUS Identifies the current status/state of a client's connection to a driver.
DRV_HANDLE Handle to an opened device driver.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

DRV_IO_BUFFER_TYPES Identifies to which buffer a device operation will apply.
DRV_IO_INTENT Identifies the intended usage of the device when it is opened.

Description

Data Types

DRV_CLIENT_STATUS Enumeration
Identifies the current status/state of a client's connection to a driver.
File

driver_common.h

C
typedef enum {
DRV_CLI ENT_STATUS_ERROR_EXTENDED = - 10,
DRV_CLI ENT_STATUS_ERRCR = -1,
DRV_CLI ENT_STATUS_CLOSED = 0,
DRV_CLI ENT_STATUS_BUSY = 1,
DRV_CLI ENT_STATUS_READY = 2,
DRV_CLI ENT_STATUS_READY_EXTENDED = 10
} DRV_CLI ENT_STATUS;
Members
Members Description
DRV_CLIENT_STATUS_ERROR_EXTENDED = | Indicates that a driver-specific error has occurred.
-10
DRV_CLIENT_STATUS_ERROR =-1 An unspecified error has occurred.
DRV_CLIENT_STATUS_CLOSED =0 The driver is closed, no operations for this client are ongoing, and/or the given handle is
invalid.
DRV_CLIENT_STATUS_BUSY =1 The driver is currently busy and cannot start additional operations.
DRV_CLIENT_STATUS_READY =2 The module is running and ready for additional operations
DRV_CLIENT_STATUS_READY_EXTENDED = | Indicates that the module is in a driver-specific ready/run state.
10
Description
Driver Client Status
This enumeration identifies the current status/state of a client's link to a driver.
Remarks

The enumeration used as the return type for the client-level status routines defined by each device driver or system module (for example,
DRV_USART_ClientStatus) must be based on the values in this enumeration.

DRV_HANDLE Type

Handle to an opened device driver.
File

driver_common.h

C
typedef uintptr_t DRV_HANDLE;

Description

Device Handle

This handle identifies the open instance of a device driver. It must be passed to all other driver routines (except the initialization, deinitialization, or

power routines) to identify the caller.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

15

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

Remarks

Every application or module that wants to use a driver must first call the driver's open routine. This is the only routine that is absolutely required for
every driver.

If a driver is unable to allow an additional module to use it, it must then return the special value DRV_HANDLE_INVALID. Callers should check the
handle returned for this value to ensure this value was not returned before attempting to call any other driver routines using the handle.

DRV_IO_BUFFER_TYPES Enumeration
Identifies to which buffer a device operation will apply.

File

driver_common.h

C
typedef enum {
DRV_I O BUFFER_TYPE_NONE = 0x00,
DRV_I O BUFFER TYPE_READ = 0x01,
DRV_I O BUFFER _TYPE_WRI TE = 0x02,
DRV_I O BUFFER _TYPE_RW = DRV_| O BUFFER_TYPE_READ| DRV_I O BUFFER TYPE_WVRI TE
} DRV_I O BUFFER _TYPES;
Members
Members Description
DRV_IO_BUFFER_TYPE_NONE = 0x00 Operation does not apply to any buffer
DRV_IO_BUFFER_TYPE_READ = 0x01 Operation applies to read buffer
DRV_IO_BUFFER_TYPE_WRITE = 0x02 Operation applies to write buffer
DRV_IO_BUFFER_TYPE_RW = Operation applies to both read and write buffers
DRV_IO_BUFFER_TYPE_READ|DRV_IO_BUFFER_TYPE_WRITE
Description

Device Driver |0 Buffer Identifier
This enumeration identifies to which buffer (read, write, both, or neither) a device operation will apply. This is used for "flush” (or similar) operations.

DRV_IO_INTENT Enumeration

Identifies the intended usage of the device when it is opened.
File

driver_common.h

C

typedef enum {
DRV_I O_| NTENT_READ,
DRV_| O | NTENT_WRI TE,
DRV_I O | NTENT_READVRI TE,
DRV_I O_| NTENT_BLOCKI NG,
DRV_I O_| NTENT_NONBLOCKI NG,
DRV_I O | NTENT_EXCLUSI VE,
DRV_| O_| NTENT_SHARED

} DRV_I O | NTENT;

Members

Members Description

DRV_IO_INTENT_READ Read

DRV_IO_INTENT_WRITE Write

DRV_IO_INTENT_READWRITE Read and Write

DRV_IO_INTENT_BLOCKING The driver will block and will return when the operation is complete
DRV_IO_INTENT_NONBLOCKING The driver will return immediately

DRV_IO_INTENT_EXCLUSIVE The driver will support only one client at a time
DRV_IO_INTENT_SHARED The driver will support multiple clients at a time

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 16

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

Description

Device Driver I/O Intent

This enumeration identifies the intended usage of the device when the caller opens the device. It identifies the desired behavior of the device
driver for the following:

Blocking or non-blocking /0 behavior (do I/O calls such as read and write block until the operation is finished or do they return immediately and
require the caller to call another routine to check the status of the operation)

Support reading and/or writing of data from/to the device

Identify the buffering behavior (sometimes called "double buffering” of the driver. Indicates if the driver should maintain its own read/write
buffers and copy data to/from these buffers to/from the caller's buffers.

Identify the DMA behavior of the peripheral

Remarks

The buffer allocation method is not identified by this enumeration. Buffers can be allocated statically at build time, dynamically at run-time, or even
allocated by the caller and passed to the driver for its own usage if a driver-specific routine is provided for such. This choice is left to the design of
the individual driver and is considered part of its interface.

These values can be considered "flags". One selection from each of the groups below can be ORed together to create the complete value passed
to the driver's open routine.

Constants

DRV_CONFIG_NOT_SUPPORTED Macro

Not supported configuration.

File

driver_common.h

C

#defi ne DRV_CONFI G_NOT_SUPPORTED (((unsi gned short) -1))

Description

Not supported configuration

If the configuration option is not supported on an instance of the peripheral, use this macro to equate to that configuration. This option should be
listed as a possible value in the description of that configuration option.

DRV_HANDLE_INVALID Macro

Invalid device handle.

File

driver_common.h

C

#def i ne DRV_HANDLE_| NVALI D (((DRV_HANDLE) -1))

Description

Invalid Device Handle

If a driver is unable to allow an additional module to use it, it must then return the special value DRV_HANDLE_INVALID. Callers should check the
handle returned for this value to ensure this value was not returned before attempting to call any other driver routines using the handle.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 17

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_IO_ISBLOCKING Macro
Returns if the 1/O intent provided is blocking
File

driver_common.h

C

#define DRV_I O I SBLOCKI NG i ntent) (intent & DRV_I O | NTENT_BLOCKI NG
Description

Device Driver Blocking Status Macro

This macro returns if the 1/0O intent provided is blocking.
Remarks

None.

DRV_IO_ISEXCLUSIVE Macro

Returns if the I/O intent provided is non-blocking.
File

driver_common.h

C
#define DRV_I O | SEXCLUSI VE(intent) (intent & DRV_|I O | NTENT_EXCLUSI VE)

Description

Device Driver Exclusive Status Macro
This macro returns if the 1/O intent provided is non-blocking.

Remarks

None.

DRV_IO_ISNONBLOCKING Macro
Returns if the 1/O intent provided is non-blocking.
File

driver_common.h

C

#define DRV_I O | SNONBLOCKI NG(i ntent) (intent & DRV_I O | NTENT_NONBLOCKI NG)
Description

Device Driver Non Blocking Status Macro

This macro returns if the I/ intent provided is non-blocking.
Remarks

None.

_DRV_COMMON_H Macro

File
driver_common.h

C
#define _DRV_COVMON_H

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Driver Library Overview

18

Volume V: MPLAB Harmony Framework Driver Libraries Help Driver Library Overview

Description
This is macro _DRV_COMMON_H.

_PLIB_UNSUPPORTED Macro
Abstracts the use of the unsupported attribute defined by the compiler.
File

driver_common.h

C
#def i ne _PLI B_UNSUPPORTED
Description
Unsupported Attribute Abstraction
This macro nulls the definition of the _PLIB_UNSUPPORTED macro, to support compilation of the drivers for all different variants.
Remarks
None.
Example
void _PLIB_UNSUPPORTED PLIB_USART_Enable(USART_MODULE_ID index);
This function will not generate a compiler error if the interface is not defined for the selected device.
Files
Files
Name Description
driver.h This file aggregates all of the driver library interface headers.
driver_common.h This file defines the common macros and definitions used by the driver definition and
implementation headers.
Description
driver.h
This file aggregates all of the driver library interface headers.
Description
Driver Library Interface Header Definitions
Driver Library Interface Header This file aggregates all of the driver library interface headers so client code only needs to include this one single
header to obtain prototypes and definitions for the interfaces to all driver libraries. A device driver provides a simple well-defined interface to a
hardware peripheral that can be used without operating system support or that can be easily ported to a variety of operating systems. A driver has
the fundamental responsibilities:
« Providing a highly abstracted interface to a peripheral
« Controlling access to a peripheral
* Managing the state of a peripheral
Remarks
The directory in which this file resides should be added to the compiler's search path for header files.
File Name
drv.h
Company

Microchip Technology Inc.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 19

Volume V: MPLAB Harmony Framework Driver Libraries Help

driver_common.h

This file defines the common macros and definitions used by the driver definition and implementation headers.

Enumerations

Name Description
DRV_CLIENT_STATUS Identifies the current status/state of a client's connection to a driver.
DRV_IO_BUFFER_TYPES Identifies to which buffer a device operation will apply.
DRV_IO_INTENT Identifies the intended usage of the device when it is opened.
Macros
Name Description
_DRV_COMMON_H This is macro _DRV_COMMON_H.
_PLIB_UNSUPPORTED Abstracts the use of the unsupported attribute defined by the compiler.
DRV_CONFIG_NOT_SUPPORTED Not supported configuration.
DRV_HANDLE_INVALID Invalid device handle.
DRV _IO_ISBLOCKING Returns if the 1/O intent provided is blocking
DRV_IO_ISEXCLUSIVE Returns if the 1/O intent provided is non-blocking.
DRV_IO_ISNONBLOCKING Returns if the I/O intent provided is non-blocking.
Types
Name Description
DRV_HANDLE Handle to an opened device driver.
Description

Driver Common Header Definitions
This file defines the common macros and definitions used by the driver definition and the implementation header.

Remarks
The directory in which this file resides should be added to the compiler's search path for header files.

File Name

drv_common.h

Company

Microchip Technology Inc.

ADC Driver Library

This section describes the Analog-to-Digital Converter (ADC) Driver Library.

Introduction

ADC Driver Library

This Analog-to-Digital Converter (ADC) driver provides an interface to manage the ADC module on the Microchip family of microcontrollers.

Description

An ADC is a vital part of any system that interfaces to real-world signals. While there are many techniques for analog-to-digital conversion, the

Microchip family of microcontrollers uses Successive Approximation as one of its primary technigues.
Through MHC, this driver provides APIs to interact with the ADC module.

Only Static implementation is supported for the ADC Driver Library.
Note:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

20

Volume V: MPLAB Harmony Framework Driver Libraries Help ADC Driver Library

Library Interface

Functions
Name Description
¢ DRV_ADC_Deinitialize Deinitializes the DRV_ADC_Initialize driver module
Implementation: Static
¢ DRV_ADC_Initialize Initializes the ADC driver.
Implementation: Static
@ DRV_ADC_SamplesAvailable Identifies if specified ADC Driver input has any samples available to read.
Implementation: Static
¢ DRV_ADC_SamplesRead Reads the converted sample data from ADC input Data buffer.
Implementation: Static
@ DRV_ADC_Start Starts the software trigger for the ADC driver sampling and converting analog to digital values.
Implementation: Static
¢ DRV_ADC_Stop Stops the Global Software Level Trigger from continuing triggering for converting ADC data.
Implementation: Static
¢ DRV_ADCx_Close Closes the ADC instance for the specified driver index.
Implementation: Static
@ DRV_ADCx_Open Opens the ADC instance for the specified driver index.
Implementation: Static
Description

This section lists the interface routines, data types, constants and macros for the library.

Functions

DRV_ADC Deinitialize Function

Deinitializes the DRV_ADC _Initialize driver module
Implementation: Static

File

help_drv_adc.h
C

voi d DRV_ADC Deinitialize();
Returns

None.

Description

This function deinitializes the ADC Driver module for the specified driver instance, making it ready for clients to use it. The initialization routine is
specified by the MHC parameters.

Remarks

None.

Preconditions

None.

Function
void DRV_ADC_Deinitialize(void)

DRV_ADC Initialize Function

Initializes the ADC driver.

Implementation: Static

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 21

Volume V: MPLAB Harmony Framework Driver Libraries Help

File

help_drv_adc.h
C

voi d DRV_ADC Initialize();
Returns

None.

Description

ADC Driver Library

This function initializes the ADC Driver module for the specified driver instance, making it ready for clients to use it. The initialization routine is

specified by the MHC parameters.

Remarks

This function must be called before any other ADC function is called. This function should only be called once during system initialization.

Preconditions

None.

Function
void DRV_ADC_Initialize(void)

DRV_ADC_SamplesAvailable Function

Identifies if specified ADC Driver input has any samples available to read.
Implementation: Static

File
help_drv_adc.h

C
bool DRV_ADC Sanpl esAvai |l abl e(ui nt8_t bufl ndex);
Returns
» true - When ADC data buffer is available to be read
» false - When ADC data buffer is not available
Description
This function identifies whether the specified ADC Driver input has any samples available to read.
Remarks

None.

Preconditions

The following functions have been called:

e DRV_ADC_Initialize

« DRV_ADCx_Open

« DRV_ADC_Start or other triggered by source setup in MHC

Parameters

Parameters Description

uint8_t bufindex ADC input number (ANX)
Function

bool DRV_ADC_SamplesAvailable(uint8_t buflndex);

DRV_ADC_SamplesRead Function

Reads the converted sample data from ADC input Data buffer.
Implementation: Static

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

22

Volume V: MPLAB Harmony Framework Driver Libraries Help

File

help_drv_adc.h
C

uint32_t DRV_ADC Sanpl esRead(ui nt 8_t bufl ndex);
Returns

uint32_t - ADC converted sample data.
Description

This function returns the converted sample data from ADC input Data buffer.
Remarks

None.
Preconditions

The following functions have been called:

« DRV_ADC_lInitialize

« DRV_ADCx_Open

 DRV_ADC_Start or other triggered by source setup in MHC

Parameters

Parameters Description

uint8_t bufindex Analog input number (ANX)
Function

uint32_t DRV_ADC_SamplesRead(uint8_t buflndex);

DRV_ADC_Start Function

Starts the software trigger for the ADC driver sampling and converting analog to digital values.

Implementation: Static
File
help_drv_adc.h

C
void DRV_ADC Start();

Returns

None.

Description

This function provides a global edge and level trigger for the ADC driver to start the conversion.

Remarks
None.
Preconditions

The following functions have been called:
« DRV_ADC_lInitialize
* DRV_ADCx_Open

Function
void DRV_ADC_ Start(void);

DRV_ADC_Stop Function

Stops the Global Software Level Trigger from continuing triggering for converting ADC data.

Implementation: Static

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

ADC Driver Library

23

Volume V: MPLAB Harmony Framework

File
help_drv_adc.h

C
voi d DRV_ADC St op();

Returns

None.

Description

This function stops the Global Software Level Trigger from continuing triggering for converting ADC data.

Remarks

None.

Preconditions

The following functions have been called:

« DRV_ADC_lInitialize
 DRV_ADCx_Open

Function
void DRV_ADC_Stop(void);

DRV_ADCx_Close Function

Closes the ADC instance for the specified driver index.

Implementation: Static
File

help_drv_adc.h
C

voi d DRV_ADCx_Cl ose();
Returns

None.

Description

This function closes the specified driver instance (where ‘X' is the instance number) making it ready for clients to use it.

Remarks

‘X' indicates the instance number.

Preconditions
DRV_ADC_Initialize has been called.

Function
void DRV_ADCx_Close(void)

DRV_ADCx_Open Function

Opens the ADC instance for the specified driver index.

Implementation: Static
File
help_drv_adc.h

C
voi d DRV_ADCx_Open();

© 2013-2017 Microchip Technology Inc.

Driver Libraries Help

MPLAB Harmony v2.06

ADC Driver Library

24

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Returns
None.
Description
This function opens the specified driver instance (where 'x' is the instance number) making it ready for clients to use it.
Remarks
X' indicates the instance number.
Preconditions
DRV_ADC lInitialize has been called.
Function
void DRV_ADCx_Open(void)

Bluetooth Driver Libraries

This section describes the Bluetooth Driver Libraries that are included in your installation of MPLAB Harmony.

BM64 Bluetooth Driver Library

This section describes the BM64 Bluetooth Driver Library.

Introduction

This library provides an Applications Programming Interface (API) to manage a BM64 Module that is connected to a Microchip PIC32
microcontroller using UART and I2S for providing Bluetooth solutions for audio and Bluetooth Low Energy (BLE) applications.

Description
The BM64 is a Bluetooth 4.2 Stereo Module that supports classic A2DP, AVRCP, HFP, HSP, and SPP protocols, as well as Bluetooth Low Energy
(BLE).

The BM64 streams 12S audio at up to 24-bit and 96 kHz, and uses a UART to receive commands from the host microcontroller (PIC32) and send
events back over the same interface.

Protocols supported by the BM64 include A2DP, AVRCP, HFP, HSP, SPP, and BLE. However, this version of the driver only supports A2DP,
AVRCP, HFP, and BLE.

The BM64 can be connected to a microphone (for HFP) and also has line-input; however, the latter is not supported by this driver. The
multi-speaker modes of the BM64 are also not handled by this driver.

A typical interface of BM64 to a Microchip PIC32 device is provided in the following diagram:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 25

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

BM64 to PIC32 Device Interface

12S 12S
—_—> _—
Control Control
| 12S H
L O U —— -

An example demonstration application using this library to interface with the BM64 for audio is BM64_a2dp_hfp, which runs on the PIC32
Bluetooth Audio Development Kit and is used to stream A2DP audio from a Bluetooth host such as a smartphone to a pair of headphones
connected to the Audio DAC Daughter Board which comes with the PIC32 Bluetooth Audio Development Kit. The smartphone is controlled using
the AVRCP functions of the library. That demonstration can also automatically answer a voice call coming in via Hands-Free Protocol (HFP),
interrupting (and pausing) any A2DP streaming in progress.

An example demonstration application using this library to interface with the BM64 for BLE functionality is BM64_ble_comm, which is used to send
a string of characters to a smartphone when one of the push buttons is pressed on the PIC32 Bluetooth Audio Development Kit, and to receive a
string of characters from the smartphone and display them on the LCD of the PIC32 Bluetooth Audio Development Kit, both using the "Transparent
Service" feature of the BM64.

The following diagram shows the specific connections used in the PIC32 Bluetooth Audio Development Kit, which uses a PIC32MX470F512L
microcontroller:

PIC32 Device and Module Connections

GPIO_20_UART2_CTS MFB &l
GPIO_12_STBY_RST RST_ N} -
m—)
GPIO_18_UART2_TXD HCI_RXD I&
GPIO_19_UART2_RXD HCI_TXD <D(
PIC32MX470F512L BM64
JREFCLK
GPIO_22 1252_BCLK SCLKO
GPIO_24_1252_LRCL RFSO NU\
GPIO_25_12582_SDO DRO B
GPIO_27_SPI12_SDI DTO

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Using the Library
This topic describes the basic architecture of the BM64 Bluetooth Driver Library and provides information and examples on its use.

Description

Interface Header File: drv_bn64. h

The interface to the BM64 Bluetooth Driver library is defined in the dr v_bn64. h header file. Any C language source (. c) file that uses the BM64
Bluetooth Driver library should include this header.

Please refer to the What is MPLAB Harmony? section for how the driver interacts with the framework.
Library Source Files:

The BM64 Bluetooth Driver Library source files are provided in the <i nst al | - di r >\ f ramewor k\ dri ver\ bl uet oot h\ bn64\ sr c directory.
This folder may contain optional files and alternate implementations. Please refer to Configuring the Library for instructions on how to select
optional features. and to Building the Library for instructions on how to build the library.

When the library is being used to stream A2DP audio from the BM64 to the PIC32, the BM64 must be configured as a 12S slave device. See the
application BM64_bootloader demonstration application for instructions on how to do this.

Abstraction Model

This library provides a low-level abstraction of the BM64 Bluetooth Driver Library on the Microchip family microcontrollers with a convenient C
language interface. This topic describes how that abstraction is modeled in software and introduces the library's interface.

Description

The abstraction model shown in the following diagram depicts how the BM64 Bluetooth Driver is positioned in the MPLAB Harmony framework.
The BM64 Bluetooth Driver uses the USART Driver Library to control the BM64 and receive event notifications, the 12S Driver Library is used to
receive audio from the BM64, and the Timer Driver for periodic timing.

BM64 Bluetooth Driver Abstraction Model

[Application]

System Services

(Audio, Interrupt, DMA, ...)

BM64 Bluetooth Driver J

12S Driver UART Driver

A Y

Peripheral Library Layer (12S, UART, Ports, Timer, etc.)

A

Hardware (12S,UART, Ports, Timer, etc.)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 27

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Library Overview

Refer to the Driver Library Overview section for information on how the driver operates in a system.

The BM64 Bluetooth Driver Library provides an API interface to transfer control commands and digital audio data to the serially interfaced BM64
Bluetooth module. The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of
the BM64 Bluetooth Driver Library.

Library Interface Section Description

System Functions Provides system module interfaces, device initialization, tasks and status functions.
Client Setup Functions Provides open and close functions.

Data Transfer Functions Provides data transfer functions.

Settings Functions Provides driver specific functions for settings, such as volume control and sampling rate.
Bluetooth-specific Functions Provides functions that are Bluetooth-specific.

AVRCP Functions Provides functions that are used for AVRCP control.

Device Name and Address Functions Provides functions for getting and setting the Bluetooth name and address.

BLE Functions Provides BLE-specific functions.

How the Library Works
Provides information on how the library works.

Description

The library provides interfaces to support:

e System

e Client Setup

» Data Transfer

e Settings

e Bluetooth

* AVRCP

* Device Name and Address

* BLE

The library can be used by programs providing functionality for audio (A2DP, AVRCP and BLE), or BLE, or both.

For audio (A2DP/AVRCP/HFP), typically, there will be one simple state machine for the application and a second state machine just for the audio.
After the application initializes, the audio state machine will open the BM64 Bluetooth Driver using a call to its Open function. Then, it will set up
callbacks for each of two event handlers, and then open the codec driver using a call to its Open function and set up a callback from it. Then, the
driver will wait until the BM64 initialization is complete, at which time the application state machine instructs the audio state machine to perform an

initial buffer read from the BM64 using an AddRead call.
case AUDI O STATE_OPEN:

{
i f (SYS_STATUS_READY == DRV_BT_Status())
{
/1 open BT nodul e, including RX audi o stream
audi oDat a. bt. handl e = DRV_BT_QOpen(DRV_I O_| NTENT_READ, DRV_BT_PROTOCOL_ALL);
i f (audi oDat a. bt. handl e ! = DRV_HANDLE_ | NVALI D)
{
audi oDat a. state = AUDI O _STATE_SET_BT_BUFFER _HANDLER;
}
}
}
br eak;
case AUDI O STATE_SET_BT_BUFFER HANDLER:
{
DRV_BT_Buf f er Event Handl er Set (audi oDat a. bt . handl e, audi oDat a. bt . buf f er Handl er,
audi oDat a. bt . context);
DRV_BT_Event Handl er Set (audi oDat a. bt . handl e, audi oDat a. bt. event Handl er, (uintptr_t)O0);
audi oDat a. state = AUDI O_STATE_CODEC_OPEN;
}
br eak;

case AUDI O _STATE_CODEC_OPEN:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 28

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

{
audi oDat a. codec. handl e = DRV_CODEC Open(DRV_CODEC | NDEX 0, DRV_I O | NTENT_WRI TE |
DRV_I O_| NTENT_EXCLUSI VE) ;
i f (audi oDat a. codec. handl e ! = DRV_HANDLE | NVALI D)
{
audi oDat a. state = AUDI O STATE_CODEC_SET_BUFFER_HANDLER;
}
}
br eak;
case AUDI O STATE_CODEC SET_BUFFER_HANDLER:
{
_set CodecSanpl i ngRat e(DRV_BT_AUDI O_SAMPLI NG_RATE) ;
DRV_CODEC Buf f er Event Handl er Set (audi oDat a. codec. handl e, audi oDat a. codec. buf f er Handl er,
audi oDat a. codec. cont ext) ;
audi oDat a. state = AUDI O _STATE_| NI T_DONE;
}
br eak;
case AUDI O STATE_I NI T_DONE:
{
/1 waits in this state until BT initialization done and app state nachine
/'l calls audioStart() to set state to AUDI O STATE_BT_SUBM T_I NI TI AL_READS
br eak;
}

After the initial buffer read has been completed, the buffer event handler for the BM64 will get a DRV_BT_BUFFER_EVENT_COMPLETE event.
Once the queue has filled up, this will advance the audio state machine’s state so that it adds the buffer to the codec’s queue using its AddWrite
function call. It then also makes a new call to the AddRead function to keep the queue filled.

When the buffer event handler for the codec gets a DRV_CODEC_BUFFER_EVENT_COMPLETE event, it will mark the buffer free for use again.
See the BM64 demonstration application, BM64_a2dp_hfp, for more information and more example code.

BLE-only applications are much simpler since they do not have to process any audio. Again typically there will be one simple state machine for the
application and a second state machine just for the BLE functionality. After the application initializes, the BLE state machine will open the BM64
Bluetooth driver using a call to its Open function, then it will set up a callback for an event handler.

The application will call one of the BLE Send functions to send data to the host (smartphone). The event handler will be called whenever data has
been received from the BM64, or when the connection status changes. See the BM64 demonstration application, BM64_ble_comm, for more
information and example code.

System Functions
This section describes the BM64 Bluetooth driver functions for initialization, maintaining task state and returning status.

Description

Initialization

The function DRV_BM®64_Initialize is called by the function SYS_Initialize, in the file system_init.c, to initialize the BM64 Bluetooth driver using
constants from the generated system_config.h file.

Tasks

The function DRV_BM64_Tasks is called from the System Task Service via the function SYS_Tasks in the file system_tasks.c to maintain the
driver's internal control and data interface state machine.

One can use the function DRV_BM64_TasksReq to make a power on/power off task request (DRV_BM64_REQ_SYSTEM_OFF or
DRV_BM64_REQ_SYSTEM_ON).

Status

The function DRV_BM®64_Status returns the BM64 Bluetooth driver status, such as SYS_STATUS_READY, SYS_STATUS_BUSY, or
SYS_STATUS_ERROR. The driver should not be opened until it has been marked ready.

Example:

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
i f (SYS_STATUS READY == DRV_BT_Status())

{

/1 This neans the driver can be opened using the

/1 DRV_BT_Open() function.

}

The BM64-specific function DRV_BM64_GetPowerStatus returns the current power status, e.g. DRV_BM64_STATUS_OFF,
DRV_BM64_STATUS_OFF, and DRV_BM64_STATUS_READY. Once it returns a ready status, this means the BM64 driver has completed its
internal state machine initialization and can begin processing audio.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 29

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Example:
case APP_STATE WAIT INIT:

{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used

i f (DRV_BT_STATUS_READY == DRV_BT_Get Power St at us())

{
appDat a. st at e=APP_STATE_| DLE;

/] can start processing audio

}
}

Client Functions
This section describes the BM64 Bluetooth driver functions for client setup (open, close, and setting up event handlers).

Description

Open and Close

For the application to start using an instance of the module, it must call the DRV_BM64_Open function which provides a driver handle to the BM64
Bluetooth driver instance.

It is necessary to check the status of driver initialization before opening a driver instance. The status of the BM64 Bluetooth Driver
Note: can be known by calling DRV_BM64_Status.

Example:
case AUDI O STATE_OPEN:
{
i f (SYS_STATUS_READY == DRV_BT_Status())
{
/1 open BT nodul e, including RX audi o stream
audi oDat a. bt . handl e = DRV_BT_Open(DRV_I O_| NTENT_READ, DRV_BT_PROTOCOL_ALL);
i f (audi oDat a. bt. handl e ! = DRV_HANDLE_| NVALI D)
{

}

audi oDat a. state = AUDI O_STATE_SET_BT_BUFFER_HANDLER

}

Event Handlers

Event handlers are functions in the user’s code that are used as callbacks from the driver when something occurs that the client needs to know
about.

The function DRV_BM®64_BufferEventHandlerSet is called by a client to identify a buffer-related event handling function for the driver to call back.
The prototype for the callback is defined by DRV_BM64 BUFFER_EVENT_HANDLER. The callback will be called with the event
DRV_BT_BUFFER_EVENT_COMPLETE.

The function DRV_BM®64_EventHandlerSet is called by a client to identify a general event handling function for the driver to call back. The
prototype for the callback is defined by DRV_BM64_EVENT_HANDLER.

For audio applications, the callback will be called with events such as DRV_BT_EVENT_VOLUME_CHANGED,
DRV_BT_EVENT_SAMPLERATE_CHANGED, and DRV_BT_EVENT_PLAYBACK_STATUS_CHANGED. For BLE applications, the callback will
be called for events such as DRV_BT_EVENT_BLESPP_MSG_RECEIVED and DRV_BT_EVENT_BLE_STATUS_CHANGED.

Example:

case APP_STATE SET BT _BUFFER_HANDLER:

{

/'l note generic version of calls (DRV_BT instead of DRV_BM64) are used
DRV_BT_Buf f er Event Handl er Set (appDat a. bt . handl e, appDat a. bt . buf f er Handl er,
appDat a. bt . cont ext) ;
DRV_BT_Event Handl er Set (appDat a. bt . handl e, appDat a. bt . event Handl er, (uintptr_t)0);
appDat a. state = APP_STATE_CODEC_OPEN;

Data Transfer Function
This section describes the BM64 Bluetooth Driver data transfer function.

Description

The function DRV_BM64_BufferAddRead schedules a non-blocking read operation. It returns with a valid buffer handle in the bufferHandle

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 30

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

argument if the read request was scheduled successfully.

If the requesting client registered an event callback with the driver, the driver will issue a DRV_BM64_BUFFER_EVENT_COMPLETE event if the
buffer was processed successfully or DRV_BM64_BUFFER_EVENT_ERROR event if the buffer was not processed successfully.

Example:
case APP_STATE BT_BUFFER_COVWPLETE:
{
if (!_bufferUsed[appData.readl ndex])
{
/I Next BT Read Queued
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Buf f er AddRead(appDat a. bt . handl e, &appDat a. bt . r eadBuf Handl e,
audi oBuf f er [appDat a. r eadl ndex] , appDat a. bt . buf fer Si ze) ;
i f (appDat a. bt . readBuf Handl e ! = DRV_BT_BUFFER_HANDLE | NVALI D)
{
appDat a. bt . r eadBuf Handl e = DRV_BT_BUFFER_HANDLE | NVALI D;
_buf ferUsed[appDat a. r eadl ndex] = true;
appDat a. r eadl ndex++;
i f (appDat a. r eadl ndex >= AUDI O QUEUE_SI ZE)
{
appDat a. readl ndex = 0;
}
appDat a. state = APP_STATE_BT_WAI T_FOR_BUFFER_COVPLETE;
}
}

Settings Functions
This section describes the BM64 Bluetooth Driver functions for getting and changing settings such as volume and sample rate.

Description

The function DRV_BM64_VolumeGet returns the volume for the current mode (A2DP or HFP) in percent (0-100), and the corresponding function
DRV_BM®64_VolumeSet sets the volume in percent.

The functions DRV_BM®64_VolumeUp and DRV_BM64_VolumeDown turn the volume up and down on the host device (e.g. smartphone) by one
increment (about 3% of full-scale). Either of these will result in a callback with the event DRV_BM64_EVENT_VOLUME_CHANGED specifying the
new volume setting.

Example:

case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)

{

/1 bunp the volume up one notch based on a button press
if (BSP_Swi tchStateGet (BSP_SW TCH 2) ==BSP_SW TCH_STATE_PRESSED))

{
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_vol uneUp(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;

}

/'l later, a call will cone back to the event handl er call back function

/'l (previously set up via a call to DRV_BMs4_Event Handl er Set)

static void _BLEEvent Handl er (DRV_BT_EVENT event, uint32_t param uintptr_t context)
{

switch(event)

{
case DRV_BMs4_EVENT_VOLUVE CHANGED:
{
uint16_t volune7bits = (127*paran)/ 100; /'l convert to 7 bits
DRV_AK4384_Vol uneSet (audi oDat a. codec. handl e, /'l update codec’s vol unme

DRV_AK4384_CHANNEL_LEFT_RI GHT, vol une7bits);
laString tenpStr;
char buf[5];
sprintf(buf,"%3d%4, paran);
| aW dget _Set Vi si bl e((1 aW dget *) GFX_VOLUVE_VALUE, LA TRUE);
tenpStr = | aString_Creat eFrontChar Buf f er (buf, &LiberationSansl12);
| aLabel W dget _Set Text (GFX_VOLUME_VALUE, tenpStr); /| update screen

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 31

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

laString_Destroy(& empStr);

Sample Rate

This section describes the functions for getting and setting the sampling rate (e.g., 8000, 44100, or 48000 Hz) as a 32-bit integer.
Description

The function DRV_BM64_EnterBTPairingMode is used to enter into pairing mode. Once the BM64 is paired with a device, it will automatically

attempt to connect with it again on the next power cycle.

Calling DRV_BM64_DisconnectAllLinks will disconnect the BM64 from the host (smartphone) but will not erase the pairing. So another call to the
function DRV_BM64_LinkLastDevice will reconnect. However calling the function DRV_BM64_ForgetAllLinks will erase all pairing information, and
another call to DRV_BM64_EnterBTPairingMode will be required to re-establish a connection.

Example:
case BUTTON_STATE_PRESSED: /' (debounci ng not shown)
{
/] initiate pairing with a button press
if (BSP_Swi tchStateGet (BSP_SW TCH 1) ==BSP_SW TCH_STATE_PRESSED))
{
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Ent er BTPai ri nghMode(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}

The function DRV_BM64_GetLinkStatus returns the current link status, returning an 8-bit value containing the current link status defined by
DRV_BM®64_LINKSTATUS enum. This can be used to restrict calls to AVRCP functions only when an AVRCP link is established.
Example:

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used

i f (DRV_BT_GCetLinkStatus(appData. bt.handl e) & DRV_BT_AVRCP_LI NK_STATUS)

{

}

DRV_BT_Cancel Forwar dOr Rewi nd(appDat a. bt . handl e) ;

AVRCP Functions
This section describes the functions for getting and setting the Bluetooth device’s name and address.

Description

The function DRV_BM64_SetBDName is called to set a temporary Bluetooth device name from an ASCII string buffer. The function
DRV_BM64_GetBDName is called to get the current Bluetooth device name, and DRV_BM64_GetBDAddress is called to get the Bluetooth device
address.
Example:

laString tenpStr;

char buf [DRV_BT_MAXBDNAMESI ZE+1] ;

/1 note generic version of calls (DRV_BT instead of DRV_BM64) are used

DRV_BT_Get BDNane(appDat a. bt . handl e, buf, DRV_BT_MAXBDNAMES| ZE+1) ;

tempStr = | aString_Creat eFronChar Buf f er (buf, &Li berationSans12);

| aLabel W dget _Set Text (GFX_BTNAME_VALUE, tenpStr); /1 display BT name

laString_Destroy(& empStr);

DRV_BT_Get BDAddr ess(appDat a. bt . handl e, buf);

tenpStr = | aString_Creat eFrontChar Buf fer (buf, &LiberationSansl12);

| aLabel W dget _Set Text (GFX_BTADDRESS VALUE, tenpStr); /'l display BT address

| aString_Destroy(& empStr);

BLE Functions

This section describes the functions specific to Bluetooth Low Energy (BLE) operations, such as sending and receiving data, and BLE
connection-related operations.

Description

The function DRV_BM®64_ReadByteFromBLE is used to receive data one byte at a time; the function DRV_BM64_ReadDataFromBLE is used to
receive multiple bytes. Each of them return a Boolean, which is true if data is returned or false if there is no data to return. You can use the
function DRV_BM64_ClearBLEData to clear out the receive buffer before starting.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 32

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Example:
uint8_t byte;
/'l note generic versions of calls (DRV_BT instead of DRV_BM64) are used
DRV_BT_C ear BLEDat a(appDat a. bt . handl e) ;
/'l wait for byte to arrive
whi | e (! DRV_BT_ReadByt eFr onBLE(appDat a. bt . handl e, &byte))

/1 should have sonme sort of way to break out of here if byte never arrives

}

Sending Data

The function DRV_BM64_SendByteOverBLE Is used to send one byte of data at a time; the function DRV_BM64_SendDataOverBLE is used to
send multiple bytes of data.

Example:
#defi ne BUFSI ZE 100

uint8_t buf [BUFSI ZE];
/'l (code goes here to fill in buffer with data)

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_SendDat aOver BLE(appDat a. bt . handl e, buf, BUFSI ZE);

Connection Status

The function DRV_BM64_BLE_EnableAdvertising is called to enable or disable BLE advertising.

The function DRV_BM64_BLE_QueryStatus queries the BM64 to respond with a DRV_BM64_EVENT_BLE_STATUS_CHANGED event, which
will indicate if the BM64 BLE status is standby, advertising, scanning or connected.

Example:
/'l note generic version of call (DRV_BT instead of DRV_BMb4) is used
DRV_BT_BLE_QuerySt at us(appDat a. bt . handl e) ;

/1 later, a call will come back to the event handl er callback function

/'l (previously set up via a call to DRV_BMs4_Event Handl er Set)

static void _BLEEvent Handl er (DRV_BT_EVENT event, uint32_t param uintptr_t context)
{

switch(event)
{
case DRV_BT_EVENT_BLE_STATUS CHANGED:
{
/'l do case switch based on param vari abl e
swi t ch(paranm
{
case DRV_BMs4_BLE STATUS_ STANDBY:
case DRV_BMB4_BLE_STATUS_SCANNI NG
| aW dget _Set Vi si bl e((| aW dget *) GFX_CONNECTED, LA FALSE);
| aW dget _Set Vi si bl e((1 aW dget *) G-FX_PAI RED, LA FALSE);
| aW dget _Set Vi si bl e((1 aW dget *) GFX_NOPAI R_NOCONNECTI ON, LA TRUE);
br eak;
case DRV_BMB4_BLE_STATUS_ADVERTI SI NG
| aW dget _Set Vi si bl e((| aW dget *) GFX_CONNECTED, LA FALSE);
| aW dget _Set Vi si bl e((1 aW dget *) G-X_PAI RED, LA TRUE); /'l actually, advertising
| aW dget _Set Vi si bl e((1 aW dget *) GFX_NOPAI R_NOCONNECTI ON, LA FALSE);
br eak;
case DRV_BMB4_BLE_STATUS_CONNECTED:
| aW dget _Set Vi si bl e((| aW dget *) GFX_CONNECTED, LA TRUE);
| aW dget _Set Vi si bl e((| aW dget *) G-FX_PAI RED, LA FALSE);
| aW dget _Set Vi si bl e((1 aW dget *) GFX_NOPAI R_NOCONNECTI ON, LA FALSE);
br eak;

Configuring the Library

Macros

Name Description
INCLUDE_BM64_BLE Identifies whether the driver should include BLE

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 33

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

INCLUDE_BM®64_12S Identifies whether the driver should include HFP,A2DP,AVRCP functionality.
INCLUDE_DEPRECATED_MMI_COMMANDS | Identifies whether the driver should use deprecated MMI commands.
Description

The configuration of the BM64 Bluetooth Driver is based on the file syst em confi g. h.

This header file contains the configuration selection for the BM64 Bluetooth Driver. Based on the selections made, the driver may support the
selected features. These configuration settings will apply to all instances of the BM64 Bluetooth Driver.

This header can be placed anywhere, the path of this header needs to be present in the include search path for a successful build. Refer to the
Applications Help section for more details.

INCLUDE_BM®64_BLE Macro

Identifies whether the driver should include BLE
File

drv_bme64_config_template.h

C

#def i ne | NCLUDE_BM54_BLE
Description

Include BLE features?

Identifies whether the driver should include BLE (Bluetooth Low Energy) functions.

This option currently does not have any effect on the code size.

true (checked, default) - include BLE functionality. false (unchecked) - do not include BLE functionality.
Remarks

None

INCLUDE_BM64_12S Macro
Identifies whether the driver should include HFP,A2DP,AVRCP functionality.
File
drv_bme64_config_template.h
C
#defi ne | NCLUDE_BMs4_1| 2S

Description

Include HFP,A2DP,AVRCP protocols?

Identifies whether the driver should include the interface to support HFP, A2DP and AVRCP protocols, which by default also brings in the 12S
driver and the default codec based on the BSP selected.

If you are building a BLE-only application, uncheck this option.
true (checked, default) - include HFP,A2DP,AVRCP functionality. false (unchecked) - do not include HFP,A2DP,AVRCP functionality.

Remarks

None

INCLUDE_DEPRECATED_MMI_COMMANDS Macro
Identifies whether the driver should use deprecated MMI commands.
File
drv_bm64_config_template.h

C
#define | NCLUDE_DEPRECATED MM _COVMANDS

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 34

Volume V: MPLAB Harmony Framework Driver Libraries Help

Description

Use Deprecated MMI Commands?

There are currently two versions of the BM64 Audio UART Command Set, which is used by the PIC32 to send commands to the BM64 module
and receive responses (events) back from the BM64. The original is version 1.00 and the updated one is version 2.0x. Version 2.0x deprecates

some MMI commands, and adds some new commands to replace them.

If the DRV_BM64_PlayPreviousSong and DRV_BM64_PlayNextSong functions are not working but other AVRCP functions are working properly,

try unchcing this option.

true (checked, default) - use deprecated MMI commands. false (unchecked) - do not deprecated MMI commands.

Remarks

None

Configuring the MHC

Provides examples on how to configure the MPLAB Harmony Configurator (MHC) for a specific driver.

Description

The following figure shows an example MHC configuration for the BM64 Bluetooth Driver.

The option Include HFP,A2DP,AVRCP protocols? identifies whether the driver should include the interface to support HFP, A2DP and AVRCP
protocols, which by default also brings in the 12S driver and the default codec based on the BSP selected. If you are building a BLE-only

—J-Harmony Framework Configuration
+-Bluetooth Library
+-Bootloader Library
+}-ClassB Safety Library
+}-Cryptographic (Crypto) Library
+-Decoder
=} Drivers
+-ADC
--Bluetooth
-}-BM64
=) [¥] Use BM&4 Driver?
[¥] Use Deprecated MMI Commands?
[¥] Indude HFP,A2DP,AVRCP Protocols?
[¥] Indude BLE Features?

:-Driver Implementation |STATIC

64 Driver Clients |1
+-Camera

- CMP

application, uncheck this option.

Bluetooth Driver Libraries

The option Include BLE features? identifies whether the driver should include BLE functions. If you are not using any BLE functionality, uncheck
this option.

When Use BM64 Driver? is selected, and you have already selected the PIC32 Bluetooth Audio Development Kit (AK4384), the proper

configuration for the AK4384, 12S, and Timer will have already been made for you, including:
Under Drivers/CODEC,

© 2013-2017 Microchip Technology Inc.

Use_Codec_AK4384 selected
12S Driver (used for data interface interface) instance set to DRV_I2S_INDEX_1

Under I12S,

Use 12S Driver Selected

DMA Mode Selected

Transmit DMA Support Selected
Receive DMA Support Selected

Enable DMA Channel Interrupts selected
Sampling Rate set to 8000

Number of I2S Instances set to 2
12S Driver Instance 0 selected

12S Module ID set to SPI_ID_2 (BM64 Module as wired on BTADK)
Audio Protocol Mode set to DRV_I2S_AUDIO_I2S

12S Driver Instance 1 selected

MPLAB Harmony v2.06

35

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

¢ 12S Module ID set to SPI_ID_1 (AK4384 DAC Module as wired on BTADK)
¢ Audio Protocol Mode set to DRV_I12S_AUDIO_LFET_JUSTIFIED

Building the Library
This section lists the files that are available in the BM64 Bluetooth Driver Library.

Description

This section lists the files that are available in the / sr ¢ folder of the BM64 Bluetooth Driver. It lists which files need to be included in the build
based on either a hardware feature present on the board or configuration option selected by the system.

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/franmework/driver/bl uet oot h/ bnb4.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description
/drv_bn64. h Header file that exports the driver API.
Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
e MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

drv_bn64_ble. h Header file for the internal functions of the driver related to BLE.
drv_bn64_command_decode. h Header file for the internal functions of the driver for decoding events from the BM64.
drv_bnb4_conmand_send. h Header file for the internal functions of the driver for sending commands to the BM64
drv_bn64_gpio. h Header file for the internal functions of the driver related to the BM64's control pins.
drv_bmb4_line_in. h Header file for the internal functions of the driver related to the BM64’s line in input.
.I'src/ framework/driver/ bl uet oot h/ bng4/ Header file for the functions local to the BM64 driver (generated from template).
drv_bnb4_l ocal . h

drv_bmb4_shal. h Header file for the internal functions of the driver for performing SHA hashes.
drv_bn64_uart.h Header file for the internal functions of the driver related to the BM64’s UART interface.

.I'src/ framework/ driver/ bl uet oot h/ bn64/ src/ | Main source implementation file for the driver (generated from template).
drv_bnb4. c

src/drv_bnB4_ble.c Source file for the internal functions of the driver related to BLE.
src/drv_bn64_command_decode. ¢ Source file for the internal functions of the driver for decoding events from the BM64.
src/drv_bnB4_conmand_send. ¢ Source file for the internal functions of the driver for sending commands to the BM64
src/drv_bnb4_gpio.c Source file for the internal functions of the driver related to the BM64’s control pins.
src/drv_bn64_line_in.c Source file for the internal functions of the driver related to the BM64’s line in input.
src/drv_bn64_shal. c Source file for the internal functions of the driver for performing SHA hashs.
src/drv_bnb4_uart.c Source file for the internal functions of the driver related to the BM64's UART interface.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

There are no optional files for this driver. N/A

Module Dependencies

The BM64 Bluetooth Driver Library depends on the following modules:
e 12S Driver Library

e Timer Driver Library

e USART Diriver Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 36

Volume V: MPLAB Harmony Framework

Library Interface

a) System Functions

¢ ¢ ¢ ¢ <

Name
DRV_BM64_GetPowerStatus
DRV_BM®64_Initialize
DRV_BM®64_Status
DRV_BM64_TaskReq
DRV_BM®64_Tasks

b) Client Setup Functions

LS SR SR

Name

Driver Libraries Help Bluetooth Driver Libraries

Description

Gets the current status of the BM64 Bluetooth driver module (BM64-specific).
Initializes hardware and data for the instance of the BM64 Bluetooth module
Gets the current system status of the BM64 Bluetooth driver module.

Make a power on/power off task request.

Maintains the driver's control and data interface state machine.

Description

DRV_BM64_BufferEventHandlerSet This function allows a client to identify a event handling function for the driver to call back.

DRV_BM®64_Close
DRV_BM®64_EventHandlerSet
DRV_BM64_Open

c) Data Transfer Functions

v

Name
DRV_BM64_BufferAddRead

d) Settings Functions

¢ ¢ ¢ ¢ ¢ <

Name
DRV_BM64_SamplingRateGet
DRV_BM64_SamplingRateSet
DRV_BM®64_volumeDown
DRV_BM64_VolumeGet
DRV_BM®64_VolumeSet
DRV_BM64_volumeUp

e) Bluetooth-specific Functions

¢ ¢ ¢ ¢ <

Name

DRV_BM®64_DisconnectAllLinks

Close an opened-instance of the BM64 Bluetooth driver.

This function allows a client to identify an event handling function for the driver to call back.

Open the specified BM64 driver instance and returns a handle to it

Description
Schedule a non-blocking driver read operation.

Description

Return the current sampling rate.

Set the current sampling rate.

Turn the volume down on the host device.
returns 7-bit value 0-127

Set current volume.

Turn the volume up on the host device.

Description
Disconnect all links.

DRV_BM64_EnterBTPairingMode | Enter Bluetooth pairing mode.

DRV_BM®64_ForgetAllLinks
DRV_BM64_GetLinkStatus
DRV_BM®64_LinkLastDevice

f) AVRCP Functions

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ @ <

g) Device Name and Address Functions

Name

Forget all pairings.
Return link status.
Link last device.

Description

DRV_BM®64_CancelForwardOrRewind Cancel previous fast forward or rewind request.

DRV_BM®64_FastForward
DRV_BM64_GetPlayingStatus
DRV_BM64_Pause
DRV_BM64_Play
DRV_BM64_PlayNextSong
DRV_BM64_PlayPause

DRV_BM64_PlayPreviousSong

DRV_BM64_Rewind
DRV_BM64_Stop

Name
DRV_BM64_GetBDAddress

© 2013-2017 Microchip Technology Inc.

Fast forward the media.

Return the current playing status of the device.
Pause playback.

Start playback.

Play the next song.

Toggle play/pause mode.

Play the previous song.

Rewind the media.

Stop playback.

Description
Return the Bluetooth address.

MPLAB Harmony v2.06

37

Volume V: MPLAB Harmony Framework

DRV_BM64_GetBDName
DRV_BM64_SetBDName

h) BLE Functions

Driver Libraries Help

Return Bluetooth device name.
Set the Bluetooth device name.

Name Description

DRV_BM64_ClearBLEData

DRV_BM64_BLE_QueryStatus

¢ ¢ ¢ ¢ | ¢ €<

i) Data Types and Constants

Name
DRV_BM64_BUFFER_EVENT

Clear the BLE receive buffer.
DRV_BM64_ReadByteFromBLE Read a byte over BLE.
DRV_BM64_ReadDataFromBLE Read data over BLE.
DRV_BM64_SendByteOverBLE Send a byte over BLE.
DRV_BM64_SendDataOverBLE Send data over BLE.

Query BM64 LE status.
DRV_BM64_BLE_EnableAdvertising Enable or disable advertising.

Description
This is macro DRV_BM64_BUFFER_EVENT.

DRV_BM64_BUFFER_EVENT_COMPLETE This is macro DRV_BM64_BUFFER_EVENT_COMPLETE.

DRV_BM64_BUFFER_HANDLE
DRV_BM64_BUFFER_HANDLE_INVALID
DRV_BM64_DATA32
DRV_BM64_MAXBDNAMESIZE
DRV_BM64 BUFFER_EVENT HANDLER
DRV_BM64_DRVR_STATUS
DRV_BM64_EVENT
DRV_BM64_EVENT HANDLER
DRV_BM64_LINKSTATUS
DRV_BM64_PLAYINGSTATUS
DRV_BM64_PROTOCOL
DRV_BM64_REQUEST
DRV_BM64_SAMPLE_FREQUENCY
DRV_BM64_BLE_STATUS

Description

This is macro DRV_BM64_BUFFER_HANDLE.
This is macro DRV_BM64_BUFFER_HANDLE_INVALID.
BM64 defines based on I12S interface

prototype for callback for DRV_BM64_BufferEventHandlerSet
BM64 driver status

events that can be returned to a client via callback

prototype for callback for DRV_BM64_EventHandlerSet
BM®64 link status

This is type DRV_BM64_PLAYINGSTATUS.

BM64 protocols

BM64 power on/off request

BM64 sample frequency

This is type DRV_BM64_BLE_STATUS.

This section describes the API functions of the BM64 Bluetooth Driver library.

Refer to each section for a detailed description.

a) System Functions

DRV_BM64_GetPowerStatus Function

Gets the current status of the BM64 Bluetooth driver module (BM64-specific).

File
drv_bme64.h
C

DRV_BM54_DRVR_STATUS DRV_BMB4_Get Power St at us() ;

Returns

Driver status, encoded as type DRV_BM64_DRVR_STATUS enum.

Description
Function DRV_BM64_GetPowerStatus:

DRV_BM64_DRVR_STATUS DRV_BM64_GetPowerStatus(void);
This routine provides the current status (power on/off/ready) of the BM64 Bluetooth driver module passed back as type

DRV_BM64_DRVR_STATUS enum.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Bluetooth Driver Libraries

38

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Remarks

A status of DRV_BT_STATUS_READY means the drivers state machine has finished initialization and is ready to stream audio.

Preconditions

DRV_BM®64 _Initialize must have been called to initialize the driver instance.

Example

case APP_STATE WAIT_INIT:

{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
i f (DRV_BT_STATUS_READY == DRV_BT_GCet Power St at us())

{
appDat a. st at e=APP_STATE_| DLE;
/] start can processing audio
}
}
br eak;

DRV_BM64_Initialize Function
Initializes hardware and data for the instance of the BM64 Bluetooth module
File
drv_bme64.h
C
void DRV_BMB4_Initialize();
Returns
None.

Description

Function DRV_BM®64_Initialize:
void DRV_BM64_Initialize(void);

This routine initializes the BM64 driver instance for the specified driver index, making it ready for clients to open and use it. The initialization data is
specified by the init parameter. The initialization may fail if the number of driver objects allocated are insufficient or if the specified driver instance is
already initialized.

Remarks

This routine must be called before any other BM64 driver routine is called. This routine should only be called once during system initialization. This
routine will never block for hardware access.

Preconditions
None.
Example

/1 (in SYS_ Initialize, systeminit.c)*

DRV_BMb4_Initialize();

DRV_BM64_Status Function

Gets the current system status of the BM64 Bluetooth driver module.
File

drv_bme64.h

C
SYS_STATUS DRV_BMB4_Stat us()

Returns
Driver status, encoded as type SYS_STATUS enum:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 39

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

SYS_STATUS_DEINITIALIZED - Indicates that the driver has been deinitialized SYS_STATUS_READY - Indicates that any previous module
operation for the specified module has completed SYS_STATUS_BUSY - Indicates that a previous module operation for the specified module has
not yet completed SYS_STATUS_ERROR - Indicates that the specified module is in an error state *

Description

Function DRV_BM64_Status:
SYS_STATUS DRV_BM®64_Status(void);
This routine provides the current status of the BM64 Bluetooth driver module, passed back as type SYS_STATUS.

Remarks

A driver can opened only when its status is SYS_STATUS_READY.
Preconditions

None.

Example

* |/ note generic version of call (DRV_BT instead of DRV_BM64) is used
i f (SYS_STATUS_READY == DRV_BT_Status())
{

/1 This neans the driver can be opened using the
/1 DRV_BT_Open() function.

DRV_BM64_TaskReq Function
Make a power on/power off task request.
File
drv_bme64.h
C
voi d DRV_BMs4_TaskReq(DRV_BMs4_REQUEST request);
Returns

None.

Description

Function DRV_BM64_TaskReq:

void DRV_BM64_TaskReq(DRV_BM64_REQUEST request);

Make a power on/power off task request using the DRV_BM64_REQUEST enum.
Remarks

None.
Preconditions
DRV_BM®64_Initialize must have been called to initialize the driver instance.

Example

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_TaskReq(DRV_BM64_REQ SYSTEM ON) ;

Parameters
Parameters Description
request power on/off request of type DRV_BM64_REQUEST

DRV_BM64_Tasks Function

Maintains the driver's control and data interface state machine.
File

drv_bm64.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 40

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

C
voi d DRV_BMb4_Tasks();
Returns
None.
Description
Function DRV_BM64_Tasks:
void DRV_BM64_Tasks(void);
This routine is used to maintain the driver's internal control and data interface state machine and implement its control and data interface
implementations.
This function should be called from the SYS_Tasks() function.
Remarks

This routine is not normally called directly by an application. Instead it is called by the system's Tasks routine (SYS_Tasks).
Preconditions

None.
Example

/1 (in SYS Tasks, systemtasks.c)

/1 Maintain Device Drivers
DRV_BM4_Tasks();

b) Client Setup Functions

DRV_BM64 BufferEventHandlerSet Function

This function allows a client to identify a event handling function for the driver to call back.
File
drv_bme64.h

C

voi d DRV_BMs4_Buf f er Event Handl er Set (DRV_HANDLE handl e, const DRV_BM64_BUFFER_EVENT_HANDLER event Handl er,
const uintptr_t contextHandle);

Returns

None.

Description

Function DRV_BM®64_BufferEventHandlerSet:

void DRV_BM64_EventHandlerSet(DRV_HANDLE handle, const DRV_BM64_BUFFER_EVENT_HANDLER eventHandler, const uintptr_t
contextHandle);

This function allows a client to identify a command event handling function for the driver to call back when the last submitted command have
finished.

When a client calls DRV_BM®64_BufferAddRead function, it is provided with a handle identifying the buffer that was added to the driver's buffer
queue. The driver will pass this handle back to the client by calling "eventHandler" function when the buffer transfer has completed.

The context parameter contains a handle to the client context, provided at the time the event handling function is registered using the
DRV_BM®64_BufferEventHandlerSet function. This context handle value is passed back to the client as the "context" parameter. It can be any
value necessary to identify the client context or instance (such as a pointer to the client's data) instance of the client.

The event handler should be set before the client performs any "BM64 Bluetooth Specific Client Routines" operations that could generate events.
The event handler once set, persists until the client closes the driver or sets another event handler (which could be a "NULL" pointer to indicate no
callback).

Remarks

If the client does not want to be notified when the command has completed, it does not need to register a callback.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 41

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Preconditions

DRV_BM64_0Open must have been called to obtain a valid opened device handle.

Example

case APP_STATE SET_BT_BUFFER_HANDLER:
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Buf f er Event Handl er Set (appDat a. bt . handl e,
appDat a. bt . buf f er Handl er,
appDat a. bt . context);

DRV_BT_Event Handl er Set (appDat a. bt . handl e,
appDat a. bt . event Handl er,
(uintptr_t)0);

appDat a. stat e = APP_STATE_CODEC_OPEN;

}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
eventHandler pointer to a function to be called back (prototype defined by
DRV_BM64_BUFFER_EVENT_HANDLER)
contextHandle handle to the client context

DRV_BM64_Close Function

Close an opened-instance of the BM64 Bluetooth driver.
File

drv_bme64.h
C

voi d DRV_BMs4_d ose(const DRV_HANDLE handl e);

Returns

None.

Description

Function DRV_BM64_Close:
void DRV_BM64_Close(DRV_HANDLE handle);

This routine closes an opened-instance of the BM64 driver, invalidating the handle. Any buffers in the driver queue that were submitted by this
client will be removed. After calling this routine, the handle passed in "handle" must not be used with any of the remaining driver routines. A new
handle must be obtained by calling DRV_BM64_Open before the caller may use the driver again

Remarks

Usually there is no need for the driver client to verify that the Close operation has completed. The driver will abort any ongoing operations when
this routine is called.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Cl ose(appDat a. bt . handl e) ;

*

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 42

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

DRV_BM64_EventHandlerSet Function

This function allows a client to identify an event handling function for the driver to call back.
File

drv_bme64.h

C

voi d DRV_BMB4_Event Handl er Set (DRV_HANDLE handl e, const DRV_BM64_EVENT_HANDLER event Handl er, const uintptr_t
cont ext Handl e) ;

Returns

None.

Description

Function DRV_BM64_EventHandlerSet:
void DRV_BM64_EventHandlerSet(DRV_HANDLE handle, const DRV_BM64_EVENT_HANDLER eventHandler, const uintptr_t contextHandle);

This function allows a client to identify a command event handling function for the driver to call back when an event has been received from the
BM64.

The context parameter contains a handle to the client context, provided at the time the event handling function is registered using the
DRV_BM64_BufferEventHandlerSet function. This context handle value is passed back to the client as the "context" parameter. It can be any
value necessary to identify the client context or instance (such as a pointer to the client's data) instance of the client.*

The event handler should be set before the client performs any "BM64 Bluetooth Specific Client Routines" operations that could generate events.

The event handler once set, persists until the client closes the driver or sets another event handler (which could be a "NULL" pointer to indicate no
callback).

Remarks

If the client does not want to be notified when an event has occurred, it does not need to register a callback.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

case APP_STATE SET_BT_BUFFER_HANDLER:
{
DRV_BT_Buf f er Event Handl er Set (appDat a. bt . handl e,
appDat a. bt . buf f er Handl er,
appDat a. bt . context);

/'l note generic version of call (DRV_BT instead of DRV_BMb4) is used
DRV_BT_Event Handl er Set (appDat a. bt . handl e,

appDat a. bt . event Handl er,

(uintptr_t)0);

appDat a. state = APP_STATE_CODEC_OPEN,

}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
eventHandler pointer to a function to be called back (prototype defined by DRV_BM64_EVENT_HANDLER)
contextHandle handle to the client context

DRV_BM64_Open Function

Open the specified BM64 driver instance and returns a handle to it
File

drv_bme64.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 43

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

C
DRV_HANDLE DRV_BMB4_Open(const DRV_I O I NTENT iolntent, const DRV_BMs4_PROTOCOL protocol);
Returns
valid handle to an opened BM64 device driver unique to client
Description
Function DRV_BM64_Open:
DRV_HANDLE DRV_BM64_Open(const DRV_IO_INTENT iolntent, const DRV_BM64_PROTOCOL protocol);
This routine opens the specified BM64 Bluetooth driver instance and provides a handle that must be provided to all other client-level operations to
identify the caller and the instance of the driver. The iolntent parameter defines how the client interacts with this driver instance.
Only DRV_IO_INTENT_READ is a valid iolntent option as the BM64 Bluetooth driver audio stream is read-only.
Specifying a DRV_IO_INTENT_EXCLUSIVE will cause the driver to provide exclusive access to this client. The driver cannot be opened by any
other client.
Remarks

The handle returned is valid until the DRV_BM®64_Close routine is called. This routine will never block waiting for hardware. If the requested intent
flags are not supported, the routine will return DRV_HANDLE_INVALID. This function is thread safe in a RTOS application. It should not be called
in an ISR.

Currently only one client is allowed at a time.

Preconditions

DRV_BM®64_Initialize must have been called to initialize the driver instance.

Example
case APP_STATE_OPEN:
{
i f (SYS_STATUS_READY == DRV_BT_Status())
{
/1 open BT nodul e, including RX audi o stream
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
appDat a. bt. handl e = DRV_BT_Open(DRV_I O_| NTENT_READ, DRV_BT_PROTOCOL_ALL);
i f (appDat a. bt. handl e ! = DRV_HANDLE | NVALI D)
{
appDat a. state = APP_STATE_SET_BT_BUFFER_HANDLER;
}
el se
{
/1 Got an Invalid Handle. Wit for BT nodule to Initialize
}
}
}
br eak;
Parameters
Parameters Description
iolntent valid handle to an opened BM64 device driver unique to client
protocol specifies which protocol(s) the client intends to use with this driver. One of the various

DRV_BM64_PROTOCOL enum values, including DRV_BM64_PROTOCOL_ALL.

c) Data Transfer Functions

DRV_BM64 BufferAddRead Function
Schedule a non-blocking driver read operation.
File
drv_bme64.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 44

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

C

voi d DRV_BMs4_Buf f er AddRead(const DRV_HANDLE handl e, DRV_BM64_BUFFER HANDLE * bufferHandl e, void * buffer,
size_t size);

Returns

The bufferHandle parameter will contain the return buffer handle. This will be DRV_BM64_BUFFER_HANDLE_INVALID if the function was not
successful.

Description

This function schedules a non-blocking read operation. The function returns with a valid buffer handle in the bufferHandle argument if the read
request was scheduled successfully. The function adds the request to the hardware instance receive queue and returns immediately. While the
request is in the queue, the application buffer is owned by the driver and should not be modified. The function returns
DRV_BM64_BUFFER_HANDLE_INVALID

« if a buffer could not be allocated to the request

« if the input buffer pointer is NULL

» if the buffer size is 0.

« if the queue is full or the queue depth is insufficient

If the requesting client registered an event callback with the driver, the driver will issue a DRV_BM64_BUFFER_EVENT_COMPLETE event if the
buffer was processed successfully of DRV_BM64_BUFFER_EVENT_ERROR event if the buffer was not processed successfully.

Remarks

This function is thread safe in a RTOS application. It can be called from within the BM64 Driver Buffer Event Handler that is registered by this
client. It should not be called in the event handler associated with another BM64 driver instance. It should not otherwise be called directly in an ISR.

Preconditions

DRV_BM#64_Open must have been called to obtain a valid opened device handle.

Example

case APP_STATE BT_BUFFER _COVPLETE:
{
/1 BT RX
if (!_bufferUsed[appData.readl ndex])
{
/1 Next BT Read Queued
/'l note generic version of call (DRV_BT instead of DRV_BMb4) is used
DRV_BT_Buf f er AddRead(appDat a. bt . handl e,
&appDat a. bt . r eadBuf Handl e,
audi oBuf f er [appDat a. r eadl ndex] ,
appDat a. bt . buf fer Si ze) ;

i f (appDat a. bt . r eadBuf Handl e ! = DRV_BT_BUFFER_HANDLE_| NVALI D)

{
appDat a. bt . readBuf Handl e = DRV_BT_BUFFER_HANDLE_| NVALI D;
_buf ferUsed[appDat a. r eadl ndex] = true;
// QUEUE HEAD | ndex (for next BT read)
appDat a. r eadl ndex++;
i f (appDat a. readl ndex >= AUDI O QUEUE_SI ZE)
{
appDat a. readl ndex = 0;
}
appbDat a. state = APP_STATE_BT_WAI T_FOR_BUFFER_COVPLETE;
}
el se
{
SYS_DEBUG 0, "BT Buffer Read FAILEDI!!");
}
}
el se
{
//Cverrun -- Wit for Read buffer to becone avail able.
SYS DEBUG 0, "Buffer Overrunrn");
}
}
br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 45

Volume V: MPLAB Harmony Framework Driver Libraries Help

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
bufferHandle pointer to an argument that contains the return buffer handle
buffer pointer to buffer that will contain received data
size buffer size in bytes.

Function

void DRV_BM64_BufferAddRead(const DRV_HANDLE handle,
DRV_BM6_BUFFER_HANDLE *bufferHandle, void *buffer, size_t size)

d) Settings Functions

DRV_BM64_SamplingRateGet Function
Return the current sampling rate.
File
drv_bme64.h
C
ui nt 32_t DRV_BMs4_Sanpl i ngRat eGet (DRV_HANDLE handl e) ;
Returns

None.

Description

Function DRV_BM64_SamplingRateGet:
uint32_t DRV_BM64_SamplingRateGet(DRV_HANDLE handle);
Return the current sampling rate as a 32-bit integer.

Remarks

None.
Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.
Example

ui nt32_t sanpl eRat e;

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
sanpl eRat e = DRV_BT_Sanpl i ngRat eGet (appDat a. bt . handl e) ;

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_SamplingRateSet Function
Set the current sampling rate.

File
drv_bme64.h

C
voi d DRV_BMB4_Sanpl i ngRat eSet (DRV_HANDLE handl e, uint32_t sanplingRate);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

46

Volume V: MPLAB Harmony Framework Driver Libraries Help

Returns

None.

Description
Function DRV_BM64_SamplingRateSet:
void DRV_BM64_SamplingRateSet(DRV_HANDLE handle, uint32_t samplingRate);
Set the current sampling rate (passed as a 32-bit integer).

Remarks

None.
Preconditions
DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

/| set sanple rate to 44.1 kHz
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Sanpl i ngRat eSet (appDat a. bt . handl e, 44100);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
samplingRate sampling rate in Hz (8000, 16000, 44100 or 48000)

DRV_BM64_volumeDown Function
Turn the volume down on the host device.
File
drv_bme64.h
C
voi d DRV_BMs4_vol umreDown(const DRV_HANDLE handl e);
Returns
None.

Description

Function DRV_BM64_VolumeDown:
void DRV_BM64_VolumeDown(const DRV_HANDLE handle);
Turn the volume down on the host device by one increment (about 3% of full-scale).

Remarks

Bluetooth Driver Libraries

This will result in a callback with the event DRV_BM64_EVENT_VOLUME_CHANGED specifying the new volume setting for the codec.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)
{
i f (BSP_Swi tchStateGet (BSP_SW TCH 2) ==BSP_SW TCH_STATE_PRESSED))

{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used

DRV_BT_vol uneUp(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;

br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

a7

Volume V: MPLAB Harmony Framework Driver Libraries Help
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_VolumeGet Function
File

drv_bme64.h
C

uint8_t DRV_BMs4_Vol unmeCet (const DRV_HANDLE handl e);

Description

returns 7-bit value 0-127

DRV_BM64_VolumeSet Function
Set current volume.
File
drv_bme64.h
C
voi d DRV_BMB4_Vol uneSet (const DRV_HANDLE handl e, uint8_t volune);
Returns
None.
Description

Function DRV_BM64_VolumeSet:
void DRV_BM64_VolumeSet(const DRV_HANDLE handle, uint8_t volume);
Set volume for current mode (A2DP, HFP etc.) in percent (0-100).

Remarks
None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used *
vol ume = DRV_BT_Vol uneCet (appbDat a. bt . handl e, 50) ; /1 set volume to 50%
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
volume volume level in percent, 0-100

DRV_BM64_volumeUp Function
Turn the volume up on the host device.
File
drv_bmé64.h

C
voi d DRV_BMs4_vol umreUp(const DRV_HANDLE handl e);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

48

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Returns
None.
Description

Function DRV_BM64_VolumeUp:
void DRV_BM64_VolumeUp(const DRV_HANDLE handle);
Turn the volume up on the host device by one increment (about 3% of full-scale).

Remarks
This will result in a callback with the event DRV_BM64_EVENT_VOLUME_CHANGED specifying the new volume setting for the codec.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /'l (debounci ng not shown)
{
if (BSP_Swi tchStateGet(BSP_SW TCH 1) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_vol uneUp(appDat a. bt . handl e) ;
appDat a. butt onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

e) Bluetooth-specific Functions

DRV_BM64_DisconnectAllLinks Function
Disconnect all links.
File
drv_bme64.h
C
voi d DRV_BMs4_Di sconnect Al | Li nks(const DRV_HANDLE handl e);
Returns
None.
Description

Function DRV_BM®64_DisconnectAllLinks:
void DRV_BM®64_DisconnectAllLinks(const DRV_HANDLE handle);
Disconnect all current links to a Bluetooth host.

Remarks

Does not unpair the device, just disconnects. Use DRV_BM64_LinkLastDevice to reconnect. Use DRV_BM®64_ForgetAllLinks to forget all pairings.
Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)

{
i f (BSP_SwitchStateGet (BSP_SW TCH 2) ==BSP_SW TCH_STATE_PRESSED))

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 49

Volume V: MPLAB Harmony Framework Driver Libraries Help

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Di sconnect Al | Li nks(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;

}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_EnterBTPairingMode Function
Enter Bluetooth pairing mode.
File
drv_bme64.h
C
voi d DRV_BMs4_Ent er BTPai ri ngvbde(const DRV_HANDLE handl e);
Returns
None.

Description

Function DRV_BM®64_EnterBTPairingMode:

void DRV_BM64_EnterBTPairingMode(const DRV_HANDLE handle);

Starting the pairing process, making this BM64 available for pairing with a Bluetooth host.
Remarks

None.
Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)
{
i f (BSP_SwitchStateGet (BSP_SW TCH 1) ==BSP_SW TCH_STATE_PRESSED))
{
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Ent er BTPai ri ngMode(appDat a. bt . handl e) ;
appbDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_ForgetAllLinks Function
Forget all pairings.

File
drv_bme64.h

C
voi d DRV_BMb4_Forget Al |l Li nks(const DRV_HANDLE handl e);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

50

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Returns
None.
Description

Function DRV_BM®64_ForgetAllLinks:
void DRV_BM64_ForgetAllLinks(const DRV_HANDLE handle);
Forget (erase) all links and pairings stored in EEPROM.

Remarks
After this is called, one must call DRV_BM®64_EnterBTPairingMode to establish a connection to a Bluetooth host again.
Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /'l (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 2) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_For get Al | Li nks(appDat a. bt . handl e) ;
appDat a. butt onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_GetLinkStatus Function
Return link status.
File
drv_bme64.h
C
DRV_BMB4_LI NKSTATUS DRV_BMB4_Get Li nkSt at us(const DRV_HANDLE handl e) ;
Returns
8-bit value defined by DRV_BM64_LINKSTATUS enum.

Description

Function DRV_BM®64_GetLinkStatus:
DRV_BM64_LINKSTATUS DRV_BM64_GetLinkStatus(const DRV_HANDLE handle);
Returns a 8-bit value containing current link status as bit flags for SCO (bit 0), ACL, HFP, A2DP, AVRCP, SPP, IAP, MAP (bit 7)

Remarks

None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))

{
DRV_BT_PLAYI NGSTATUS pl ayi ngSt at us = DRV_BT_Get Pl ayi ngSt at us(appDat a. bt . handl e) ;
if ((playingStatus==DRV_BT_PLAYI NG FF) || (pl ayi ngSt at us==DRV_BT_PLAYI NG _FR))

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 51

Volume V: MPLAB Harmony Framework Driver Libraries Help

/'l note generic version of call (DRV_BT instead of DRV_BMb4) is used
i f (DRV_BT_GetLinkStatus(appbata. bt. handl e) & DRV_BT_AVRCP_LI NK_STATUS)

{
DRV_BT_Cancel Forwar dOr Rewi nd(appDat a. bt . handl e) ;
}
}
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_LinkLastDevice Function
Link last device.
File
drv_bme64.h
C
voi d DRV_BMs4_Li nkLast Devi ce(const DRV_HANDLE handl e);
Returns

None.

Description

Function DRV_BM®64_LinkLastDevice:
void DRV_BM®64_LinkLastDevice(const DRV_HANDLE handle);
Link (connect) to last device that was previously linked.

Remarks
None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /' (debounci ng not shown)
{
i f (BSP_SwitchStateGet (BSP_SW TCH_2) ==BSP_SW TCH_STATE_PRESSED))
{
/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Li nkLast Devi ce(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

f) AVRCP Functions

DRV_BM64_CancelForwardOrRewind Function

Cancel previous fast forward or rewind request.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

52

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

File
drv_bme64.h
C
voi d DRV_BMs4_Cancel Forwar dOr Rewi nd(const DRV_HANDLE handl e);
Returns
None.
Description

Function DRV_BM64_CancelForwardOrRewind:
void DRV_BM64_CancelForwardOrRewind(const DRV_HANDLE handle);
Send an AVRCP command to the host device to cancel a previous fast forward or rewind request.

Remarks
None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /' (debounci ng not shown)
{
i f (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Cancel Forwar dOr Rewi nd(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_FastForward Function
Fast forward the media.
File
drv_bme64.h
C
voi d DRV_BMs4_Fast Forwar d(const DRV_HANDLE handl e) ;
Returns
None.

Description

Function DRV_BM®64_FastForward:
void DRV_BM®64_FastForward(const DRV_HANDLE handle);
Send an AVRCP command to the host device to Fast forward the media.

Remarks
None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 53

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Example
case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)
{
i f (BSP_Swi tchStateGet (BSP_SW TCH 5) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Fast For war d(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_GetPlayingStatus Function
Return the current playing status of the device.
File
drv_bme64.h
C
DRV_BM54_PLAYI NGSTATUS DRV_BMbB4_Get Pl ayi ngSt at us(const DRV_HANDLE handl e) ;
Returns
None.

Description

Function DRV_BM64_GetPlayingStatus:
void DRV_BM64_GetPlayingStatus(const DRV_HANDLE handle);

Return the current AVRCP playing status of the device, e.g. stopped, playing, paused, fast forward or rewind, encoded as as the enum
DRV_BM64_PLAYINGSTATUS.

Remarks
None.
Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /'l (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_PLAYI NGSTATUS pl ayi ngSt at us = DRV_BT_Get Pl ayi ngSt at us(appDat a. bt . handl e) ;
if ((playingStatus==DRV_BT_PLAYI NG _FF) || (pl ayi ngSt at us==DRV_BT_PLAYI NG_FR))
{
i f (DRV_BT_Get Li nkSt at us(appDat a. bt. handl e) & DRV_BT_AVRCP_L| NK_STATUS)
{
DRV_BT_Cancel Forwar dOr Rewi nd(appDat a. bt . handl e) ;
}
}
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 54

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

DRV_BM64_Pause Function
Pause playback.
File
drv_bme64.h
C
voi d DRV_BMB4_Pause(const DRV_HANDLE handl e);
Returns
None.

Description

Function DRV_BM64_Pause:
void DRV_BM64_Pause(const DRV_HANDLE handle);
Send an AVRCP command to the host device to pause.

Remarks

None.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /1 (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Pause(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_Play Function
Start playback.
File
drv_bme64.h
C
voi d DRV_BMs4_Pl ay(const DRV_HANDLE handl e);
Returns
None.
Description

Function DRV_BM®64_Play:
DRV_BM64_Play(const DRV_HANDLE handle);
Send an AVRCP command to the host device to initiate or resume playback.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 55

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Preconditions

DRV_BM64_0Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /'l (debounci ng not shown)
{
i f (BSP_SwitchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_PI ay(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_PlayNextSong Function
Play the next song.
File
drv_bme64.h
C
voi d DRV_BMs4_PI ayNext Song(const DRV_HANDLE handl e) ;
Returns

None.

Description

Function DRV_BM®64_PlayNextSong:
void DRV_BM64_PlayNextSong(const DRV_HANDLE handle);
Send an AVRCP command to the host device to play the next song in a playlist.

Remarks

None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /' (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_PI ayNext Song(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 56

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_BM64_PlayPause Function
Toggle play/pause mode.
File
drv_bme64.h
C
voi d DRV_BMB4_Pl ayPause(const DRV_HANDLE handl e);
Returns
None.

Description

Function DRV_BM®64_PlayPause:
void DRV_BM64_PlayPause(const DRV_HANDLE handle);
Send an AVRCP command to the host device to toggle the play/pause mode.

Remarks
None.
Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /1 (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/'l note generic version of call (DRV_BT instead of DRV_BM54)
DRV_BT_Pl ayPause(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_PlayPreviousSong Function
Play the previous song.
File
drv_bme64.h
C
voi d DRV_BMs4_PI ayPr evi ousSong(const DRV_HANDLE handl e);
Returns
None.
Description

Function DRV_BM®64_PlayPreviousSong:
void DRV_BM64_PlayPreviousSong(const DRV_HANDLE handle);
Send an AVRCP command to the host device to play the previous song in a playlist.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

57

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Preconditions

DRV_BM64_0Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /'l (debounci ng not shown)
{
i f (BSP_SwitchStateGet (BSP_SW TCH 5) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_PI ayPr evi ousSong(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_Rewind Function
Rewind the media.
File
drv_bme64.h
C
voi d DRV_BMs4_Rew nd(const DRV_HANDLE handl e);
Returns

None.

Description

Function DRV_BM64_Rewind:
void DRV_BM64_Rewind(const DRV_HANDLE handle);
Send an AVRCP command to the host device to rewind the media.

Remarks
None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE_PRESSED: /' (debounci ng not shown)
{
if (BSP_SwitchStateGet (BSP_SW TCH 5) ==BSP_SW TCH_STATE_PRESSED))
{
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Rew nd(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 58

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_BM64_Stop Function
Stop playback.
File
drv_bme64.h
C
voi d DRV_BMB4_St op(const DRV_HANDLE handl e);
Returns
None.
Description

Function DRV_BM®64_Stop:
void DRV_BM®64_Stop(const DRV_HANDLE handle);
Send an AVRCP command to the host device to stop playback.

Remarks
None.
Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example
case BUTTON_STATE PRESSED: /1 (debounci ng not shown)
{
if (BSP_Swi tchStateGet (BSP_SW TCH 3) ==BSP_SW TCH_STATE_PRESSED))
{
/'l note generic version of call (DRV_BT instead of DRV_BM54)
DRV_BT_St op(appDat a. bt . handl e) ;
appDat a. but t onSt at e=BUTTON_STATE_WAI T_FOR_RELEASE;
}
}
br eak;
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

g) Device Name and Address Functions

DRV_BM64_GetBDAddress Function
Return the Bluetooth address.
File
drv_bme64.h
C
voi d DRV_BMs4_Get BDAddr ess(const DRV_HANDLE handl e, char* buffer);
Returns
None.
Description

Function DRV_BM64_GetBDAddress:
void DRV_BM64_GetBDAddress(const DRV_HANDLE handle, char* buffer);
Return the Bluetooth address of the device as an ASCII string.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

59

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Remarks

Buffer must be at least 18 bytes in length (6 octets separated by ?:?, e.g. able to hold "12:34:56:78:90:120").
Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

laString tenpStr;
char buf [18];

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Get BDAddr ess(appDat a. bt. handl e, buf);

tenpStr = | aString_Creat eFronCharBuf f er (buf, &LiberationSans12);

| aLabel W dget _Set Text (GFX_BTADDRESS_VALUE, tempStr); /1 display BT address
laString_Destroy(& empStr);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
buffer pointer to a char buffer at least 18 bytes long

DRV_BM64_GetBDName Function
Return Bluetooth device name.
File
drv_bme64.h
C
voi d DRV_BMB4_Get BDNane(const DRV_HANDLE handl e, char* buffer, const uint8_t buflen);
Returns
None.
Description
Function DRV_BM64_GetBDName:
void DRV_BM64_GetBDName(const DRV_HANDLE handle, char* buffer, const uint8_t buflen);
Return the Bluetooth device name as an ASCII string.
Remarks

If name is longer than buflen-1 bytes long, it will be truncated to fit inside the buffer.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

laString tenpStr;
char buf [DRV_BT_MAXBDNAMESI ZE+1] ;

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_GCet BDNane(appDat a. bt . handl e, buf, DRV_BT_MAXBDNAMES| ZE+1) ;
tenpStr = | aString_Creat eFrontChar Buf f er (buf, &LiberationSansl12);

| aLabel W dget _Set Text (GFX_BTNAME_VALUE, tenpStr); /'l display BT nane
| aString_Destroy(& empStr);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
buffer pointer to a char buffer at least buflen bytes long
buflen length of buffer (including terminating O byte)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 60

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_BM64_SetBDName Function
Set the Bluetooth device name.
File
drv_bme64.h
C
voi d DRV_BMB4_Set BDNanme(const DRV_HANDLE handl e, const char* buffer);
Returns
None.
Description

Function DRV_BM64_SetBDName:
void DRV_BM64_SetBTName(const DRV_HANDLE handle, const char* buffer);
Set a temporary Bluetooth device name from an ASCII string buffer.

Remarks

Bluetooth Driver Libraries

The name is set for this session only; if the BM64 is reset (e.g. power is lost) the name will revert to the Bluetooth name stored in EEPROM.

Preconditions
DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_Set BDNane(appDat a. bt . handl e, "Tenporary BM54 Nane");

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
buffer pointer to a char buffer containing the new name

h) BLE Functions

DRV_BM64_ClearBLEData Function
Clear the BLE receive buffer.
File
drv_bme64.h
C
voi d DRV_BMs4_d ear BLEDat a(const DRV_HANDLE handl e) ;
Returns
None.
Description

Function DRV_BM®64_ClearBLEData:
void DRV_BM64_ClearBLEData(const DRV_HANDLE handle);

Clears the buffer used when receiving characters via the DRV_BM64_ReadByteFromBLE and DRV_BM64_ReadDataFromBLE calls.

Remarks

None.

Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

61

Volume V: MPLAB Harmony Framework Driver Libraries Help

Example
uint8_t byte;

/1 note generic versions of calls (DRV_BT instead of DRV_BM64) is used
DRV_BT_C ear BLEDat a(appDat a. bt . handl e) ;

/1l wait for byte to arrive
whi |l e (! DRV_BT_ReadByt eFr onBLE(appDat a. bt . handl e, &byte))

{
/1 should have some sort of way to break out of here if byte never arrives
}
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_ReadByteFromBLE Function
Read a byte over BLE.
File
drv_bme64.h
C
bool DRV_BMb4_ReadByt eFr onBLE(const DRV_HANDLE handl e, uint8_t* byte);
Returns
bool - true if a byte was returned, false if receive buffer empty

Description
Function DRV_BM64_ReadByteFromBLE:
bool DRV_BM64_ReadByteFromBLE(const DRV_HANDLE handle, uint8_t* byte);
Read one byte over BLE using the BM64's "Transparent Service" feature.
Remarks

None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
uint8_t byte;

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
i f (DRV_BT_ReadByt eFr onBLE(appDat a. bt . handl e, &byte)) // if byte received
{

/1 do sonething

}
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
byte pointer to a uint8_t to receive the data

DRV_BM64_ReadDataFromBLE Function
Read data over BLE.

File
drv_bme64.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

62

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

C
bool DRV_BMbB4_ReadDat aFr onBLE(const DRV_HANDLE handl e, uint8_t* byte, uintl6_t size);
Returns
bool - true if data was returned, false if receive buffer empty
Description
Function DRV_BM64_ReadDataFromBLE:
bool DRV_BM64_ReadDataFromBLE(const DRV_HANDLE handle, uint8_t* bytes, uintl6_t size);
Read data over BLE using the BM64's "Transparent Service" feature.
Remarks

No more than size bytes will be returned, even if more are available.
Preconditions
DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

#defi ne BUFSI ZE 100
uint8_t buf [BUFSIZE];

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
i f (DRV_BT_ReadDat aFr onBLE(appDat a. bt . handl e, buf, BUFSIZE)) // if data received

{
/1 do sonething
}
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
bytes pointer to a uint8_t buffer at least size bytes long
size length of buffer (including

DRV_BM64_SendByteOverBLE Function
Send a byte over BLE.
File
drv_bme64.h
C
voi d DRV_BMs4_SendByt eOver BLE(const DRV_HANDLE handl e, uint8_t byte);
Returns
None.
Description

Function DRV_BM64_SendByteOverBLE:
void DRV_BM64_SendByteOverBLE(const DRV_HANDLE handle, uint8_t byte);
Send one byte over BLE using the BM64's "Transparent Service" feature.

Remarks

None.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
uint8_t byte;

byte = 10; /] set to sone val ue

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 63

Volume V: MPLAB Harmony Framework Driver Libraries Help

/'l note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_SendByt eOver BLE(appDat a. bt . handl e, byte);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
byte uint8_t of data to be sent

DRV_BM64_SendDataOverBLE Function
Send data over BLE.
File
drv_bme64.h
C
voi d DRV_BMs4_SendDat aOver BLE(const DRV_HANDLE handl e, uint8_t* bytes, uintl6_t size);
Returns
None.

Description

Function DRV_BM®64_SendDataOverBLE:
void DRV_BM64_SendDataOverBLE(const DRV_HANDLE handle, uint8_t* bytes, uintl6_t size);
Send data over BLE using the BM64's "Transparent Service" feature.

Remarks
None.
Preconditions

DRV_BM64_Open must have been called to obtain a valid opened device handle.

Example

#define BUFSIZE 100
uint8_t buf [BUFSIZE;

/1 (code to fill in buffer with data)

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_SendDat aOver BLE(appDat a. bt . handl e, buf, BUFSI ZE);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
bytes pointer to a uint8_t buffer at least size bytes long
size length of buffer (including

DRV_BM64_BLE_QueryStatus Function
Query BM64 LE status.

File
drv_bme64.h

C
voi d DRV_BMs4_BLE QueryStatus(const DRV_HANDLE handl e);

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

64

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

Description
Function DRV_BM64_BLE_QueryStatus:
void DRV_BM64_BLE_QueryStatus(const DRV_HANDLE handle);
Queries the BM64 to respond with a DRV_BM64_EVENT_BLE_STATUS_CHANGED event, which will indicate if the BM64 BLE status is standby,
advertising, scanning or connected.

Remarks

RV_BM64_BLE_QueryStatus is non-blocking; it returns right away and sometime later (perhaps tens or hundreds of ms) the event handler
callback will be called.

Preconditions

DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example

/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used
DRV_BT_BLE_QuerySt at us(appDat a. bt . handl e) ;

/1 later, a call will come back to the event handl er callback function

/'l (previously set up via a call to DRV_BMs4_Event Handl er Set)

static void _BLEEvent Handl er (DRV_BT_EVENT event, uint32_t param uintptr_t context)
{

swi tch(event)

{
case DRV_BT_EVENT_BLE_STATUS_ CHANGED:
{
// do case switch based on param vari abl e
}
}
}
Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client

DRV_BM64_BLE_EnableAdvertising Function
Enable or disable advertising.
File
drv_bme64.h
C
voi d DRV_BM64_BLE_Enabl eAdverti si ng(const DRV_HANDLE handl e, bool enable);
Returns

None.

Description

Function DRV_BM64_BLE_EnableAdvertising:
void DRV_BM64_BLE_EnableAdvertising(const DRV_HANDLE handle, bool enable);
Enable or disable BLE advertising.

Remarks
None.
Preconditions
DRV_BM®64_Open must have been called to obtain a valid opened device handle.

Example
/1 note generic version of call (DRV_BT instead of DRV_BMs4) is used

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 65

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_BM64_BLE_Enabl eAdverti si ng(appDat a. bt. handl e, true);

Parameters
Parameters Description
handle valid handle to an opened BM64 device driver unique to client
enable true to enable advertising, false to disable advertising

i) Data Types and Constants

DRV_BM64_BUFFER_EVENT Macro
File
drv_bme64.h

C
#def i ne DRV_BM64_BUFFER_EVENT DRV_| 2S_BUFFER_EVENT

Description
This is macro DRV_BM64_BUFFER_EVENT.

DRV_BM64 BUFFER_EVENT_COMPLETE Macro
File
drv_bm64.h

C
#define DRV_BMB4_BUFFER EVENT_COMPLETE DRV_| 2S_BUFFER EVENT_COMPLETE

Description
This is macro DRV_BM64_BUFFER_EVENT_COMPLETE.

DRV_BM64_BUFFER_HANDLE Macro
File
drv_bme64.h

C
#def i ne DRV_BMB4_BUFFER HANDLE DRV_| 2S BUFFER HANDLE

Description
This is macro DRV_BM64_BUFFER_HANDLE.

DRV_BM64 BUFFER_HANDLE_INVALID Macro
File
drv_bm64.h

C
#def i ne DRV_BMB4_BUFFER_HANDLE_| NVALI D DRV_| 2S_BUFFER_HANDLE_| NVALI D

Description
This is macro DRV_BM64_BUFFER_HANDLE_INVALID.

DRV_BM64_DATA32 Macro

File
drv_bmé64.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

66

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

C
#def i ne DRV_BM64_DATA32 DRV_| 2S DATA32

Description
BM64 defines based on I2S interface

DRV_BM64_MAXBDNAMESIZE Macro
File

drv_bme64.h
C

#defi ne DRV_BM64_NMAXBDNAMESI ZE 32

Section

Constants

DRV_BM64 _BUFFER_EVENT_HANDLER Type
File
drv_bme64.h

C
typedef void (* DRV_BM4_BUFFER_EVENT_HANDLER) (DRV_BMb4_BUFFER_EVENT event, uintptr_t contextHandle);

Description
prototype for callback for DRV_BM64_BufferEventHandlerSet

DRV_BM64_DRVR_STATUS Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BM54_STATUS_NONE,
DRV_BMb4_STATUS_OFF,
DRV_BM54_STATUS_ON,
DRV_BMs4_STATUS_READY

} DRV_BMb54_DRVR_STATUS;

Description
BM®64 driver status

DRV_BM64_EVENT Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BM64_EVENT_NONE = 0,
DRV_BMB4_EVENT_NSPK_STATUS,
DRV_BMB4_EVENT LI NE_I N_STATUS,
DRV_BM54_EVENT_A2DP_STATUS,
DRV_BMp4_EVENT_CALL_STATUS_CHANGED,
DRV_BMb4_EVENT _CODEC _TYPE,
DRV_BM54_EVENT_HFP_CONNECTED,
DRV_BMB4_EVENT_HFP_DI SCONNECTED,
DRV_BNMB4_EVENT _A2DP_CONNECTED,
DRV_BMB4_EVENT_A2DP_DI SCONNECTED,
DRV_BMp4_EVENT _AVRCP_CONNECTED,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 67

Volume V: MPLAB Harmony Framework Driver Libraries Help Bluetooth Driver Libraries

DRV_BMB4_EVENT_AVRCP_DI SCONNECTED,
DRV_BMB4_EVENT_SPP_CONNECTED,
DRV_BMB4_EVENT_| AP_CONNETED,
DRV_BMB4_EVENT_SPP_| AP_DI SCONNECTED,
DRV_BMB4_EVENT_ACL_CONNECTED,
DRV_BMB4_EVENT_ACL_DI SCONNECTED,
DRV_BMB4_EVENT_SCO CONNECTED,
DRV_BMB4_EVENT_SCO_DI SCONNECTED,
DRV_BMB4_EVENT_MAP_CONNECTED,
DRV_BMB4_EVENT_MAP_DI SCONNECTED,
DRV_BMB4_EVENT_SYS_POAER ON,
DRV_BMB4_EVENT_SYS_POAER_CFF,
DRV_BMB4_EVENT_SYS_STANDBY,
DRV_BMB4_EVENT_SYS_PAI Rl NG_START,
DRV_BMB4_EVENT_SYS_PAI RI NG_CX,
DRV_BMB4_EVENT_SYS_PAI R NG _FAI LED,
DRV_BMB4_EVENT_LI NKBACK_SUCCESS,
DRV_BMB4_EVENT_LI NKBACK_FAI LED,
DRV_BMB4_EVENT_BD_ADDR_RECEI VED,
DRV_BMB4_EVENT_PAI R_RECORD RECEI VED,
DRV_BMB4_EVENT_LI NK_MODE_RECE| VED,
DRV_BMB4_EVENT_PLAYBACK_STATUS_CHANGED,
DRV_BMB4_EVENT_AVRCP_VOLUME _CTRL,
DRV_BMB4_EVENT_AVRCP_ABS_VOLUVE_CHANGED,
DRV_BMB4_EVENT_HFP_VOLUME_CHANGED,
DRV_BMB4_EVENT VOLUME_CHANGED,
DRV_BMB4_EVENT_SANMPLERATE_CHANGED,
DRV_BMB4_EVENT_NSPK_SYNC_POAER_CFF,
DRV_BMB4_EVENT_NSPK_SYNC VOL_CTRL,
DRV_BMB4_EVENT_NSPK_SYNC_| NTERNAL_GAI N,
DRV_BMB4_EVENT_NSPK_SYNC_ABS_VOL,
DRV_BMB4_EVENT_NSPK_CHANNEL_SETTI NG,
DRV_BMB4_EVENT_NSPK_ADD_SPEAKERS3,
DRV_BMB4_EVENT_LE_STATUS_CHANGED,
DRV_BMB4_EVENT_LE_ADV_CONTROL_REPCRT,
DRV_BMB4_EVENT_LE_CONNECTI ON_PARA REPORT,
DRV_BMB4_EVENT_LE_CONNECTI ON_PARA_UPDATE_RSP,
DRV_BVB4_EVENT_GATT_ATTRI BUTE_DATA,
DRV_BMB4_EVENT _PORTO_| NPUT_CHANGED,
DRV_BMB4_EVENT_PORT1_| NPUT_CHANGED,
DRV_BMB4_EVENT_PORT2_| NPUT_CHANGED,
DRV_BMB4_EVENT _PORT3_| NPUT_CHANGED,
DRV_BMB4_EVENT_BLESPP_MSG_RECEI VED,
DRV_BMB4_EVENT_BLE_STATUS_CHANGED

} DRV_BMB4_EVENT;

Description

events that can be returned to a client via callback

DRV_BM64_EVENT_HANDLER Type
File
drv_bm64.h
C
typedef void (* DRV_BMs4_EVENT_HANDLER) (DRV_BMB4_EVENT event, uint32_t param uintptr_t contextHandle);

Description
prototype for callback for DRV_BM64_EventHandlerSet

DRV_BM64_LINKSTATUS Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BMB4_NO LI NK_STATUS = 0,
DRV_BMB4_SCO LI NK_STATUS = 0x01,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 68

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_BMB4_ACL_LI NK_STATUS = 0x02,
DRV_BMB4_HFP_LI NK_STATUS = 0x04,
DRV_BMB4_A2DP_LI NK_STATUS = 0x08,
DRV_BMB4_AVRCP_LI NK_STATUS = 0x10,
DRV_BMB4_SPP_LI NK_STATUS = 0x20,
DRV_BMB4_| AP_LI NK_STATUS = 0x40,
DRV_BMB4_MAP_LI NK_STATUS = 0x80

} DRV_BMB4_LI NKSTATUS;

Description
BM64 link status

DRV_BM64_PLAYINGSTATUS Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BMp4_PLAYI NG STOPPED,
DRV_BMB4_PLAYI NG_PLAYI NG,
DRV_BMB4_PLAYI NG_PAUSED,
DRV_BMB4_PLAYI NG FF,
DRV_BMB4_PLAYI NG FR,
DRV_BMB4_PLAYI NG ERROR

} DRV_BMB4_PLAYI NGSTATUS;

Description
This is type DRV_BM64_PLAYINGSTATUS.

DRV_BM64_PROTOCOL Enumeration
File
drv_bm64.h

C

typedef enum {
DRV_BMs4_PROTOCOL_A2DP = 1,
DRV_BM54_PROTOCOL_AVRCP = 2,

DRV_BM54_PROTOCOL_HFP_HSP = 4,

DRV_BMB4_PROTOCOL_SPP = 8,
DRV_BMB4_PROTOCOL_BLE = 16,
DRV_BMB4_PROTOCOL_ALL = 31

} DRV_BMB4_PROTOCOL;

Description
BM64 protocols

DRV_BM64_REQUEST Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BMB4_REQ NONE = 0,
DRV_BMB4_REQ SYSTEM ON,
DRV_BMB4_REQ SYSTEM OFF
} DRV_BMB4_REQUEST;

Description
BM64 power on/off request

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Bluetooth Driver Libraries

69

Volume V: MPLAB Harmony Framework

Driver Libraries Help Bluetooth Driver Libraries

DRV_BM64_SAMPLE_FREQUENCY Enumeration

File
drv_bme64.h

C

typedef enum {
DRV_BMs4_SAMPLEFREQ 8000 = 0,
DRV_BMB4_SAVPLEFREQ 12000,
DRV_BMb4_SAMPLEFREQ 16000,
DRV_BNMB4_SAMPLEFREQ 24000,
DRV_BMB4_SAVPLEFREQ 32000,
DRV_BMb4_SAMPLEFREQ 48000,
DRV_BM54_SAMPLEFREQ 44100,
DRV_BMB4_SAVPLEFREQ 88000,
DRV_BMb4_SAMPLEFREQ 96000

} DRV_BM54_SAMPLE_FREQUENCY;

Description
BM64 sample frequency

DRV_BM64 BLE_STATUS Enumeration
File
drv_bme64.h

C

typedef enum {
DRV_BMB4_BLE_STATUS STANDBY,
DRV_BM54_BLE_STATUS_ADVERTI SI NG
DRV_BMb4_BLE_STATUS_SCANNI NG,
DRV_BMB4_BLE_STATUS_CONNECTED
} DRV_BMB4 BLE STATUS;
Description

This is type DRV_BM64_BLE_STATUS.

Files

Files

Name
drv_bme64.h
drv_bme64_config_template.h

Description

Description
BM64 Bluetooth Static Driver main header file
BM64 Bluetooth Driver Configuration Template.

This section lists the source and header files used by the BM64 Bluetooth Driver Library.

drv_bm64.h
BM64 Bluetooth Static Driver main header file
Enumerations

Name
DRV_BM64_BLE_STATUS
DRV_BM64 DRVR_STATUS
DRV_BM64_EVENT
DRV_BM64_LINKSTATUS
DRV_BM64_PLAYINGSTATUS
DRV_BM64_PROTOCOL
DRV_BM64_REQUEST

© 2013-2017 Microchip Technology Inc.

Description

This is type DRV_BM64_BLE_STATUS.

BM64 driver status

events that can be returned to a client via callback
BM64 link status

This is type DRV_BM64_PLAYINGSTATUS.
BM64 protocols

BM64 power on/off request

MPLAB Harmony v2.06 70

Volume V: MPLAB Harmony Framework

Functions

LR S SR SR SRR IR S S SR SR SR S SR S SR SR SR IR S SHIE SR SR SN SRR SR CHIR SR Sl IR SRR SR SRR SRR SN IR SRR SHIR SRR SRR SR CHIR G ¢

Macros

Driver Libraries Help Bluetooth Driver Libraries

DRV_BM64_SAMPLE_FREQUENCY BM64 sample frequency

Name

DRV_BM®64_BLE_EnableAdvertising

DRV_BM64_BLE_QueryStatus
DRV_BM®64_BufferAddRead

DRV_BM®64_BufferEventHandlerSet
DRV_BM®64_CancelForwardOrRewind

DRV_BM64_ClearBLEData
DRV_BM64_Close
DRV_BM®64_DisconnectAllLinks
DRV_BM64_EnterBTPairingMode
DRV_BM®64_EventHandlerSet
DRV_BM®64_FastForward
DRV_BM®64_ForgetAllLinks
DRV_BM64_GetBDAddress
DRV_BM64_GetBDName
DRV_BM64_GetLinkStatus
DRV_BM64_GetPlayingStatus
DRV_BM64_GetPowerStatus
DRV_BM®64_Initialize
DRV_BM®64_LinkLastDevice
DRV_BM64_Open
DRV_BM64_Pause
DRV_BM64_Play
DRV_BM64_PlayNextSong
DRV_BM®64_PlayPause
DRV_BM®64_PlayPreviousSong
DRV_BM64_ReadByteFromBLE
DRV_BM64_ReadDataFromBLE
DRV_BM64_Rewind
DRV_BM64_SamplingRateGet
DRV_BM64_SamplingRateSet
DRV_BM®64_SendByteOverBLE
DRV_BM64_SendDataOverBLE
DRV_BM64_SetBDName
DRV_BM64_Status
DRV_BM64_Stop
DRV_BM64_TaskReq
DRV_BM64_Tasks
DRV_BM®64_volumeDown
DRV_BM64_VolumeGet
DRV_BM®64_VolumeSet
DRV_BM®64_volumeUp

Name
DRV_BM64_BUFFER_EVENT

Description

Enable or disable advertising.

Query BM64 LE status.

Schedule a non-blocking driver read operation.

This function allows a client to identify a event handling function for the driver to call back.
Cancel previous fast forward or rewind request.

Clear the BLE receive buffer.

Close an opened-instance of the BM64 Bluetooth driver.

Disconnect all links.

Enter Bluetooth pairing mode.

This function allows a client to identify an event handling function for the driver to call back.
Fast forward the media.

Forget all pairings.

Return the Bluetooth address.

Return Bluetooth device name.

Return link status.

Return the current playing status of the device.

Gets the current status of the BM64 Bluetooth driver module (BM64-specific).
Initializes hardware and data for the instance of the BM64 Bluetooth module
Link last device.

Open the specified BM64 driver instance and returns a handle to it
Pause playback.

Start playback.

Play the next song.

Toggle play/pause mode.

Play the previous song.

Read a byte over BLE.

Read data over BLE.

Rewind the media.

Return the current sampling rate.

Set the current sampling rate.

Send a byte over BLE.

Send data over BLE.

Set the Bluetooth device name.

Gets the current system status of the BM64 Bluetooth driver module.
Stop playback.

Make a power on/power off task request.

Maintains the driver's control and data interface state machine.

Turn the volume down on the host device.

returns 7-bit value 0-127

Set current volume.

Turn the volume up on the host device.

Description
This is macro DRV_BM64_BUFFER_EVENT

DRV_BM64_BUFFER_EVENT_COMPLETE This is macro DRV_BM64_BUFFER_EVENT_COMPLETE.

DRV_BM64_BUFFER_HANDLE

This is macro DRV_BM64_BUFFER_HANDLE.

DRV_BM64_BUFFER_HANDLE_INVALID | This is macro DRV_BM64_BUFFER_HANDLE_INVALID.

DRV_BM64_DATA32
DRV_BM64_MAXBDNAMESIZE

© 2013-2017 Microchip Technology Inc.

BM64 defines based on I12S interface

MPLAB Harmony v2.06 71

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Types
Name Description
DRV_BM64_BUFFER_EVENT_HANDLER prototype for callback for DRV_BM64_BufferEventHandlerSet
DRV_BM64_EVENT_HANDLER prototype for callback for DRV_BM64_EventHandlerSet
Description

BM64 Bluetooth Static Driver implementation
This file is the header file for the external (public) API of the static implementation of the BM64 driver.

The BM64 is a Bluetooth 4.2 Stereo Module that supports classic A2DP, AVRCP, HFP, HSP, and SPP protocols as well as BLE (Bluetooth Low
Energy).

The BM64 streams 12S audio at up to 24-bit, 96 kHz. It uses a UART to receive commands from the host microcontroller (PIC32) and and send
events back.

All functions and constants in this file are named with the format DRV_BM®64_xxx, where xxx is a function name or constant. These names are
redefined in the appropriate configuration?s system_config.h file to the format DRV_BT_xxx using #defines so that Bluetooth code in the
application can be written as generically as possible (e.g. by writing DRV_BT_Open instead of DRV_BM64_Open etc.).

File Name
drv_bme64.h

Company

Microchip Technology Inc.

drv_bm64 config_template.h

BM64 Bluetooth Driver Configuration Template.

Macros
Name Description
INCLUDE_BM®64_BLE Identifies whether the driver should include BLE
INCLUDE_BM®64_12S Identifies whether the driver should include HFP,A2DP,AVRCP functionality.
INCLUDE_DEPRECATED_MMI_COMMANDS | Identifies whether the driver should use deprecated MMI commands.
Description

BM64 Driver Configuration Template
These file provides the list of all the configurations that can be used with the driver. This file should not be included in the driver.

File Name

drv_bme64_config_template.h

Company

Microchip Technology Inc.

Camera Driver Libraries

This section describes the Camera Driver Libraries.

Introduction

This section provides information on the Camera Driver libraries that are provided in MPLAB Harmony and describes the APIs that are common to
all drivers.

Library Interface

a) Common Driver Functions

Name Description

DRV_CAMERA_Close Closes an opened instance of an CAMERA module driver.
DRV_CAMERA_Deinitialize Deinitializes the index instance of the CAMERA module.
DRV_CAMERA_Initialize Initializes hardware and data for the index instance of the CAMERA module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 72

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

¢ DRV_CAMERA_Open Opens the specified instance of the Camera driver for use and provides an "open instance"
handle.
DRV_CAMERA_Reinitialize Reinitializes hardware and data for the index instance of the CAMERA module.
DRV_CAMERA_Status Provides the current status of the index instance of the CAMERA module.
DRV_CAMERA_Tasks This is function DRV_CAMERA_Tasks.

b) Common Data Types and Constants

Name Description

DRV_CAMERA_INIT Defines the data required to initialize or reinitialize the CAMERA driver.
DRV_CAMERA_INTERRUPT_PORT_REMAP Defines the data required to initialize the CAMERA driver interrupt port remap.
DRV_CAMERA_INDEX_0O Camera driver index definitions.

DRV_CAMERA_INDEX_1 This is macro DRV_CAMERA_INDEX_1.

DRV_CAMERA_INDEX_COUNT Number of valid CAMERA driver indices.

CAMERA_MODULE_ID This is type CAMERA_MODULE_ID.

Description

Camera Driver APIs that are common to all Camera drivers.

a) Common Driver Functions

DRV_CAMERA_Close Function

Closes an opened instance of an CAMERA module driver.
File

drv_camera.h
C

voi d DRV_CAMERA Cl ose(DRV_HANDLE handl €);
Returns

None.
Description

This function closes an opened instance of an CAMERA module driver, making the specified handle invalid.
Remarks

None.

Preconditions

The DRV_CAMERA _Initialize routine must have been called for the specified CAMERA device instance and the DRV_CAMERA_Status must
have returned SYS_STATUS_READY.

DRV_CAMERA_Open must have been called to obtain a valid opened device handle.

Example
nyCaner aHandl e = DRV_CAMERA_ Open(DRV_CAMERA | D_1, DRV_| O | NTENT_NONBLOCKI NG DRV_| O_| NTENT_READWRI TE) ;

DRV_CAMERA_d ose(nyCaner aHandl e) ;

Parameters

Parameters Description

drvHandle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_CAMERA_Close (const DRV_HANDLE drvHandle)

DRV_CAMERA_Deinitialize Function

Deinitializes the index instance of the CAMERA module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 73

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Librari

File
drv_camera.h

C
voi d DRV_CAMERA Deinitialize(const SYS_MODULE_I NDEX i ndex);

Returns

None.

Description

es

This function deinitializes the index instance of the CAMERA module, disabling its operation (and any hardware for driver modules). It deinitializes

only the specified module instance. It also resets all the internal data structures and fields for the specified instance to the default settings.

Remarks

None.

Preconditions

The DRV_CAMERA _Initialize function should have been called before calling this function.

Example
SYS_STATUS camer aSt at us;

DRV_CAMERA Dei niti al i ze(DRV_CAMVERA | D 1);

caneraSt atus = DRV_CAMERA St at us(DRV_CAMERA | D 1);

Parameters

Parameters Description

index Index, identifying the instance of the CAMERA module to be deinitialized
Function

void DRV_CAMERA_Deinitialize (const SYS_MODULE_ID index)

DRV_CAMERA _Initialize Function

Initializes hardware and data for the index instance of the CAMERA module.
File

drv_camera.h

C
SYS MODULE _OBJ DRV_CAMERA | nitialize(const SYS MODULE | NDEX i ndex, const SYS MODULE INIT * const init);
Returns

None.

Description

This function initializes hardware for the index instance of the CAMERA module, using the hardware initialization given data. It also initializes any
internal driver data structures making the driver ready to be opened.

Remarks

None.

Preconditions

None.

Example
DRV_CAMERA | NI T_DATA caner al ni t Dat a;
SYS_STATUS camer aSt at us;

/'l Popul ate the caneralnitData structure
caner al ni t Dat a. nodul el nit. power State = SYS_MODULE_POMER _RUN_FULL;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

74

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

caner al ni t Dat a. nodul el ni t. nodul eCode = (DRV_CAMERA | NI T_DATA MASTER | DRV_CAMERA | NI T_DATA SLAVE);

DRV_CAMERA I nitialize(DRV_CAMERA I D 1, (SYS_MODULE | NI T*) &caner al ni t Dat a) ;
caneraSt atus = DRV_CAMERA St at us(DRV_CAMERA | D 1);

Parameters
Parameters Description
index Index, identifying the instance of the CAMERA module to be initialized
data Pointer to the data structure containing any data necessary to initialize the hardware. This
pointer may be null if no data is required and the default initialization is to be used.
Function

void DRV_CAMERA_Initialize (const CAMERA_MODULE_ID index,
const SYS_MODULE_INIT *const data)

DRV_CAMERA_Open Function
Opens the specified instance of the Camera driver for use and provides an "open instance" handle.
File

drv_camera.h

C
DRV_HANDLE DRV_CAMERA Open(const SYS MODULE | NDEX i ndex, const DRV_I O | NTENT intent);

Returns
If successful, the routine returns a valid open-instance handle (a value identifying both the caller and the module instance). If an error occurs, the
returned value is DRV_HANDLE_INVALID.

Description

This function opens the specified instance of the Camera module for use and provides a handle that is required to use the remaining driver
routines.

This function opens a specified instance of the Camera module driver for use by any client module and provides an "open instance" handle that
must be provided to any of the other Camera driver operations to identify the caller and the instance of the Camera driver/hardware module.

Preconditions
The DRV_CAMERA_Initialize routine must have been called for the specified CAMERA device instance and the DRV_CAMERA_Status must
have returned SYS_STATUS_READY.

Example

DRV_HANDLE caner aHandl e;
DRV_CAMERA CLI ENT_STATUS camer ad i ent St at us;

caner aHandl e = DRV_CAMERA Open(DRV_CAMERA | D 1, DRV_I O | NTENT_NONBLOCKI NG DRV_I O | NTENT_READVWRI TE) ;
i f (DRV_HANDLE_| NVALI D == caner aHandl e)
{

}

/1 Handl e open error

canmeraCientStatus = DRV_CAMERA Client St atus(caneraHandl e) ;

/1 Cose the device when it is no | onger needed.
DRV_CAMERA_d ose(caner aHandl e) ;

Parameters
Parameters Description
index Index, identifying the instance of the CAMERA module to be opened.
intent Flags parameter identifying the intended usage and behavior of the driver. Multiple flags may
be ORed together to specify the intended usage of the device. See the DRV_IO_INTENT
definition.
Function

DRV_HANDLE DRV_CAMERA_Open (const SYS_MODULE_INDEX index,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 75

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

const DRV_IO_INTENT intent)

DRV_CAMERA_Reinitialize Function
Reinitializes hardware and data for the index instance of the CAMERA module.
File
drv_camera.h
C
voi d DRV_CAMERA Reinitialize(const SYS_MODULE_I NDEX index, const SYS_MODULE_INIT *const data);
Returns
None.

Description

This function reinitializes hardware for the index instance of the CAMERA module, using the hardware initialization given data. It also reinitializes
any internal driver data structures making the driver ready to be opened.

Remarks
None.

Preconditions

The DRV_CAMERA _Initialize function should have been called before calling this function.

Example
SYS_ MODULE_INIT caneralnit;
SYS_STATUS camer aSt at us;

DRV_CAMERA Reinitialize(DRV_CAMERA | D 1, &caneraStatus);

Parameters
Parameters Description
index Index, identifying the instance of the CAMERA module to be reinitialized
data Pointer to the data structure containing any data necessary to reinitialize the hardware. This
pointer may be null if no data is required and default configuration is to be used.
Function

void DRV_CAMERA_Reinitialize(const SYS_MODULE_ID index,
const SYS_MODULE_INIT *const data)

DRV_CAMERA_Status Function
Provides the current status of the index instance of the CAMERA module.
File
drv_camera.h
C
SYS_STATUS DRV_CAMERA St atus(const SYS_MODULE_| NDEX i ndex) ;
Returns
The current status of the index instance.
Description
This function provides the current status of the index instance of the CAMERA module.
Remarks
None.
Preconditions

The DRV_CAMERA _Initialize function should have been called before calling this function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 76

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Function
SYS_STATUS DRV_CAMERA_Status (const CAMERA_MODULE_ID index)

DRV_CAMERA_Tasks Function
File

drv_camera.h

C
voi d DRV_CAMERA Tasks(SYS_MODULE_OBJ object);

Description
This is function DRV_CAMERA_Tasks.

b) Common Data Types and Constants

DRV_CAMERA_INIT Structure
Defines the data required to initialize or reinitialize the CAMERA driver.
File

drv_camera.h

C
typedef struct {
SYS_MODULE_INI'T nodul el nit;
int canerald;
SYS_MODULE_OBJ (* drvinitialize)(const SYS MODULE | NDEX index, const SYS MODULE INIT * const init);
DRV_HANDLE (* drvOpen) (const SYS_MODULE | NDEX i ndex, const DRV_I O I NTENT intent);
| NT_SOURCE i nt errupt Sour ce;
DRV_CAMERA_| NTERRUPT_PORT_RENAP i nt errupt Port;
uintl6_t orientation;
uint16_t horizontal Resol ution;
uint16_t vertical Resol ution;
} DRV_CAMERA INT;
Members
Members Description
SYS_MODULE_INIT modulelnit; System module initialization
int camerald; ID
uintl6_t orientation; Orientation of the display (given in degrees of 0,90,180,270)
uint16_t horizontalResolution; Horizontal Resolution of the displayed orientation in Pixels
Description
CAMERA Diriver Initialization Data
This data type defines the data required to initialize or reinitialize the CAMERA driver. If the driver is built statically, the members of this data
structure are statically over-ridden by static override definitions in the system_config.h file.
Remarks

None.

DRV_CAMERA_INTERRUPT_PORT_REMAP Structure

Defines the data required to initialize the CAMERA driver interrupt port remap.
File

drv_camera.h

C
typedef struct {

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 77

Volume V: MPLAB Harmony Framework Driver Libraries Help

PORTS_REMAP_| NPUT_FUNCTI ON i nput Funct i on;
PORTS_REMAP_| NPUT_PI N i nput Pi n;
PORTS_ANALOG PI N anal ogPi n;
PORTS_PI N_MODE pi nhbde;
PORTS_CHANNEL channel ;
PORTS_DATA MASK dat aMask;

} DRV_CAMERA | NTERRUPT_PORT REMAP;

Description

CAMERA Diriver Interrupt Port Remap Initialization Data
This data type defines the data required to initialize the CAMERA driver interrupt port remap.

Remarks

None.

DRV_CAMERA_INDEX_0 Macro
Camera driver index definitions.

File
drv_camera.h

C
#def i ne DRV_CAMERA | NDEX 0 0

Description

Camera Driver Module Index Numbers
These constants provide the Camera driver index definitions.

Remarks

These constants should be used in place of hard-coded numeric literals.

Camera Driver Libraries

These values should be passed into the DRV_CAMERA_Initialize and DRV_CAMERA_Open functions to identify the driver instance in use.

DRV_CAMERA_INDEX_1 Macro
File
drv_camera.h

C
#define DRV_CAMERA | NDEX 1 1

Description
This is macro DRV_CAMERA_INDEX_1.

DRV_CAMERA_INDEX_COUNT Macro
Number of valid CAMERA driver indices.

File
drv_camera.h

C
#def i ne DRV_CAMERA | NDEX_COUNT 1

Description

CAMERA Driver Module Index Count
This constant identifies the number of valid CAMERA driver indices.

Remarks

This constant should be used in place of hard-coded numeric literals.

This value is derived from device-specific header files defined as part of the peripheral libraries.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

78

Volume V: MPLAB Harmony Framework

CAMERA_MODULE_ID Enumeration

File
drv_camera.h

C

typedef enum {
CAVERA_MCDULE_OVM7Z690
} CAMERA MODULE_ | D
Description

This is type CAMERA_MODULE_ID.

Files

Files

Name
drv_camera.h

Description

drv_camera.h
Camera device driver interface file.
Enumerations

Name
CAMERA_MODULE_ID

Driver Libraries Help Camera Driver Libraries

Description
Camera device driver interface file.

Description
This is type CAMERA_MODULE_ID.

Description

Closes an opened instance of an CAMERA module driver.

Deinitializes the index instance of the CAMERA module.

Initializes hardware and data for the index instance of the CAMERA module.

Opens the specified instance of the Camera driver for use and provides an "open instance"
handle.

Reinitializes hardware and data for the index instance of the CAMERA module.
Provides the current status of the index instance of the CAMERA module.
This is function DRV_CAMERA_Tasks.

Description

Camera driver index definitions.

This is macro DRV_CAMERA_INDEX_1.
Number of valid CAMERA driver indices.

Description
Defines the data required to initialize or reinitialize the CAMERA driver.

DRV_CAMERA_INTERRUPT_PORT_REMAP Defines the data required to initialize the CAMERA driver interrupt port remap.

Functions
Name
@ DRV_CAMERA _Close
¢ DRV_CAMERA_Deinitialize
@ DRV_CAMERA _Initialize
@ DRV_CAMERA_Open
¢ DRV_CAMERA_Reinitialize
¢ DRV_CAMERA_Status
DRV_CAMERA_Tasks
Macros
Name
DRV_CAMERA_INDEX_0
DRV_CAMERA_INDEX_1
DRV_CAMERA_INDEX_COUNT
Structures
Name
DRV_CAMERA_INIT
Description

Camera Driver Interface

The Camera driver provides a abstraction to all camera drivers.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 79

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

File Name
drv_camera.h
Company

Microchip Technology Inc.

OVM7690 Camera Driver Library

This topic describes the OVM7690 Camera Driver Library.

Introduction

The OVM7690 Camera Driver provides a high-level interface to manage the OmniVision Technologies, Inc. OVM7690 640x480 CameraCube™
device (referred to as the OVM7690) that is interfaced with serial and parallel ports to a Microchip microcontroller for providing camera solutions.

Description

The OVM7690 640x480 CameraCube™ device (referred to as the OVM7690) can be interfaced to a Microchip microcontroller using the 12C serial
interface and parallel port interface. The I2C serial interface is used for control command transfer. The 12C module from the microcontroller is
connected to the SCCB serial interface of the OVM7690. The parallel port interface is used to transfer pixel data from the OVM7690 to the
microcontroller. There are few other signals from the camera to be interfaced with the microcontroller. The XVCLK pin of the camera is driven by
the Output Compare module. Frame synchronization signals such as HREF and VSYNC from the camera are connected to suitable pins
supporting change notification within the microcontroller. The PCLK pin of the camera drives the pixel clock and is connected at the pin of the
microcontroller supporting external interrupts. The PWDN pin of the camera supports camera power-down mode and is connected at any output
port pin of the microcontroller. A typical interface of the OVM7690 to a PIC32 device is provided in the following diagram:

(zzrag%g$2)< '—————1 Data0 through Data7

= SCL

12C Interface
e —— = SDA
PIC32 Output OVM7690

Compare W XVCLK

el HREF
Ports & VSYNC

Interface |-t PCLK

= PWDN

Using the Library
This topic describes the basic architecture of the OVM7690 Camera Driver Library and provides information and examples on its use.

Description

Interface Header File: dr v_caner a_ovn¥690. h
The interface to the Camera Driver Library is defined in the dr v_camer a_ovn7690. h header file.
Please refer to the What is MPLAB Harmony? section for how the driver interacts with the framework.

Library Overview

Refer to the Driver Library Overview section for information on how the driver operates in a system.
The library interface routines are divided into various sub-sections, which address the overall operation of the OVM7690 Camera Driver Library.

Library Interface Section Description

System Functions Provides system module interfaces, device initialization and deinitialization.

Client Setup Functions Provides open and close functions.

Camera-specific Functions Provides APIs that are camera-specific.

Other Functions Provides miscellaneous driver-specific functions such as register set functions, among others.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 80

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Abstraction Model

This library provides a low-level abstraction of the OVM7690 Camera Driver Library on Microchip's microcontrollers with a convenient C language
interface. This topic describes how that abstraction is modeled in software and introduces the library's interface.

Description

The OVM7690 Camera Driver is modeled using the abstraction model, as shown in the following diagram.

-
[Application

System Services
(Interrupt, DMA, Ports, etc.)

J

=,

[PLIB Layer (I2C, Ports, Timer, Output Compare, etc.)

A

~

[Hardware (12C, Ports, Timer, Output Compare, etc.)

How the Library Works
Provides information on how the OVM7690 Camera Driver Library works.

Description

The library provides interfaces to support:
« System functionality
¢ Client functionality

System Initialization

The system performs the Initialization of the device driver with settings that affect only the instance of the device that is being initialized. During
system initialization, each instance of the OVM7690 would be initialized with the following configuration settings that are supported by the specific
OVM7690 device hardware:

e Camera ID: OVM7690 ID

» Source Port: Address of source port to which the pixel data is received

e Horizontal Sync Channel: Channel of the pin to be configured as horizontal sync

* Horizontal Sync Position: Horizontal sync port pin position from selected port channel

« Vertical Sync Channel: Channel the pin to be configured as vertical sync

« Vertical Sync Position: Vertical sync port pin position from selected port channel

e Horizontal Sync Interrupt Source

» Vertical Sync Interrupt Source

* DMA Channel: DMA channel to transfer pixel data from camera to frame buffer

« DMA Channel Trigger Source

» Bits Per Pixel: Bits per pixel to define the size of frame line

The DRV_CAMERA_OVM7690_Initialize API returns an object handle of the type SYS_MODULE_OBJ. The object handler returned by the
Initialize Interface would be used by the other interfaces such as DRV_CAMERA_OVM7690_Deinitialize.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 81

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Client Access

For the application to start using an instance of the module, it must call the DRV_CAMERA_OVM7690_Open function. The
DRV_CAMERA_OVM7690_Open function provides a driver handle to the OVM7690 Camera Driver instance for operations. If the driver is
deinitialized using the function DRV_CAMERA_OVM7690_Deinitialize function, the application must call the DRV_CAMERA_OVM7690_Open
function again to set up the instance of the driver.

Client Operations

Client operations provide the API interface for control command and pixel data transfer from the OVM7690 Camera Driver to the Graphics Frame
Buffer.

Configuring the Library

Macros

Name Description
DRV_OVM7690_INTERRUPT_MODE Controls operation of the driver in the interrupt or polled mode.

Description

The configuration of the OVM7690 Camera Driver is based on the file syst em confi g. h.
This header file contains the configuration selection for the OVM7690 Camera Driver build. Based on the selections made here and the system
setup, the OVM7690 Camera Driver may support the selected features. These configuration settings will apply to all instances of the driver.

This header can be placed anywhere in the application specific folders and the path of this header needs to be presented to the include search for
a successful build. Refer to the Applications Help section for more details.

Control Commands

The following OVM7690-specific control commands are provided:
* DRV_CAMERA_OVM7690_FrameBufferAddressSet

* DRV_CAMERA_OVM7690_Start

* DRV_CAMERA_OVM7690_Stop

« DRV_CAMERA_OVM7690_FrameRectSet

Application Process

An application needs to perform following steps:

The system should have completed necessary setup initializations.

The 12C driver object should have been initialized by calling DRV_I2C_Initialize.

The Timer driver object should have been initialized by calling DRV_Timer_Initialize,

The Output Control driver object should have been initialized by calling DRV_OC_Initialize,

The OVM7690 Camera Driver object should have been initialized by calling DRV_CAMERA_OVM7690_Initialize,

Open the OVM7690 Camera Driver client by calling DRV_CAMERA_OVM7690_Open.

Pass the Graphics Frame buffer address to OVM7690 Camera Driver by calling DRV_CAMERA_OVM7690_FrameBufferAddressSet.
Set the Frame Rectangle area by calling DRV_CAMERA_OVM7690_FrameRectSet.

Set Other Camera settings such as: soft reset, enabling pclk, enabling href, enabling vsync, output color format, reversing HREF polarity,
gating clock to the HREF, pixel clock frequency, sub-sampling mode by calling DRV_CAMERA_OVM7690_RegisterSet.

10. Start the OVM7690 Camera by calling DRV_CAMERA_OVM7690_Start.

© ® NGO~ ODNPE

DRV_OVM7690_INTERRUPT_MODE Macro
Controls operation of the driver in the interrupt or polled mode.
File
drv_ovm7690_config_template.h
C

#def i ne DRV_OVMZ690_| NTERRUPT_MODE f al se

Description

OVM7690 Interrupt And Polled Mode Operation Control
This macro controls the operation of the driver in the interrupt mode of operation. The possible values of this macro are:
e true - Select if interrupt mode of OVM7690 operation is desired

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 82

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

« false - Select if polling mode of OVM7690 operation is desired
Not defining this option to true or false will result in a build error.

Remarks

None.

Building the Library
This section lists the files that are available in the OVM7690 Camera Driver Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/franmework/driver/caneral ovni7690.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

/drv_camera_ovnv690. h This file provides the interface definitions of the OVM7690 Camera Driver.

Required File(s)

et All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/'src/drv_camera_ovni7690. ¢ This file contains the implementation of the OVM7690 Camera Driver.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A No optional files are available for this library.

Module Dependencies

The OVM7690 Camera Driver Library depends on the following modules:
e 12C Driver Library

» Output Compare Driver Library

e Timer Driver Library

Library Interface

a) System Functions

Name Description

DRV_CAMERA_OVM7690_Initialize Initializes the OVM7690 Camera instance for the specified driver index.
DRV_CAMERA_OVM7690_Deinitialize Deinitializes the specified instance of the OVM7690 Camera Driver module.
DRV_CAMERA_OVM7690_RegisterSet | Sets the camera OVM7690 configuration registers.
DRV_CAMERA_OVM7690_Tasks Maintains the OVM7690 state machine.

¢ ¢ ¢ <

b) Client Setup Functions

Name Description
DRV_CAMERA_OVM7690_Open | Opens the specified OVM7690 Camera Driver instance and returns a handle to it.
DRV_CAMERA_OVM7690_Close Closes an opened instance of the OVM7690 Camera Driver.

c) Camera-specific Functions

Name Description
¢ DRV_CAMERA_OVM7690_FrameBufferAddressSet Sets the framebuffer address.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 83

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

DRV_CAMERA_OVM7690_FrameRectSet Sets the frame rectangle set.
DRV_CAMERA_OVM7690_Start Starts camera rendering to the display.
DRV_CAMERA_OVM7690_Stop Stops rendering the camera Pixel data.

d) Other Functions

Name Description

DRV_CAMERA_OVM7690_HsyncEventHandler Horizontal synchronization event handler.
DRV_CAMERA_OVM7690_VsyncEventHandler |Vertical synchronization event handler .
_DRV_CAMERA_OVM7690_DMAEventHandler | This is function _DRV_CAMERA_OVM7690_DMAEventHandler.
_DRV_CAMERA_OVM7690_delayMS This is function _DRV_CAMERA_OVM7690_delayMS.
_DRV_CAMERA_OVM7690_HardwareSetup | This is function _DRV_CAMERA_OVM7690_HardwareSetup.

¢ ¢ ¢ <

e) Data Types and Constants

Name Description

DRV_CAMERA_OVM7690_CLIENT_OBJ OVM7690 Camera Driver client object.
DRV_CAMERA_OVM7690_CLIENT_STATUS Identifies OVM7690 Camera possible client status.
DRV_CAMERA_OVM7690_ERROR Identifies OVM7690 Camera possible errors.
DRV_CAMERA_OVM7690_INIT OVM7690 Camera Driver initialization parameters.
DRV_CAMERA_OVM7690_0OBJ OVM7690 Camera Driver instance object.
DRV_CAMERA_OVM7690_RECT OVM7690 Camera window rectangle coordinates.
DRV_CAMERA_OVM7690_REG12_OP_FORMAT | Lists OVM7690 Camera device register addresses.
DRV_CAMERA_OVM7690_INDEX_0 OVM7690 driver index definitions.
DRV_CAMERA_OVM7690_INDEX_1 This is macro DRV_CAMERA_OVM7690_INDEX_1.
DRV_CAMERA_OVM7690_REG12_SOFT_RESET OVM7690 Camera Driver Register 0x12 Soft reset flag.
DRV_CAMERA_OVM7690_SCCB_READ_ID OVM7690 Camera SCCB Interface device Read Slave ID.

DRV_CAMERA_OVM7690_SCCB_WRITE_ID OVM7690 Camera SCCB Interface device Write Slave ID.

Description

This section describes the Application Programming Interface (API) functions of the Camera Driver Library.

a) System Functions

DRV_CAMERA_OVM7690_Initialize Function
Initializes the OVM7690 Camera instance for the specified driver index.
File

drv_camera_ovm7690.h

C
SYS MODULE _OBJ DRV_CAMERA OVM7690_ I nitialize(const SYS MODULE | NDEX drvl ndex, const SYS MODULE INIT * const
init);

Returns
If successful, returns a valid handle to a driver instance object. Otherwise, returns SYS_MODULE_OBJ_INVALID.

Description
This function initializes the OVM7690 Camera Driver instance for the specified driver index, making it ready for clients to open and use it. The
initialization data is specified by the init parameter. The initialization may fail if the number of driver objects allocated are insufficient or if the
specified driver instance is already initialized. The driver instance index is independent of the OVM7690 Camera module ID. Refer to the
description of the DRV_CAMERA_OVM7690_INIT data structure for more details on which members on this data structure are overridden.

Remarks

This function must be called before any other OVM7690 Camera Driver function is called.

This function should only be called once during system initialization unless DRV_CAMERA_OVM7690_Deinitialize is called to deinitialize the
driver instance. This function will NEVER block for hardware access.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 84

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Preconditions

None.

Example

/1 The follow ng code snippet shows an exanple OV/M/690 driver initialization.

DRV_CAVMERA OVMZ690_INI'T caneralnit;

SYS_MODULE_0OBJ obj ect Handl e;

caneral nit.caneral D = CAVMVERA_MODULE_OVMI690;

caner al ni t. sourcePort = (void *)&PORTK,

caner al ni t. hsyncl nt errupt Sour ce = | NT_SOURCE_CHANGE_NOTI CE_A,

caneral ni t.vsyncl nt errupt Source = | NT_SOURCE_CHANGE_NOTI CE_J,

caner al ni t. dmaChannel = DRV_CAMERA OVM7690_DMA CHANNEL_ | NDEX,
caneral nit.dmaTri gger Sour ce = DMA_TRI GGER_EXTERNAL_2,

caneral ni t. bpp = GFX_CONFI G_COLOR _DEPTH,

obj ect Handl e = DRV_CAVMERA_OVMZ690_I nitial i ze(DRV_CAMERA OVM7690_I NDEX O,
(SYS_MODULE_I NI T*) &caneral nit);
if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)

{
/1 Handl e error

}
Parameters

Parameters Description

index Identifier for the instance to be initialized

init Pointer to a data structure containing any data necessary to initialize the driver.
Function

SYS_MODULE_OBJ DRV_CAMERA_OVM7690_nitialize

(
const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init

)

DRV_CAMERA_OVM7690_Deinitialize Function

Deinitializes the specified instance of the OVM7690 Camera Driver module.
File

drv_camera_ovm7690.h
C

voi d DRV_CAMERA OVMr690 _Deinitial i ze(SYS_MODULE_OBJ object);
Returns

None.
Description

This function deinitializes the specified instance of the OVM7690 Camera Driver module, disabling its operation (and any hardware), and
invalidates all of the internal data.

Remarks

Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again. This
function will NEVER block waiting for hardware.

Preconditions
Function DRV_CAMERA_OVM7690_Initialize should have been called before calling this function.

Example
SYS_MODULE_0OBJ object; // Returned from DRV_CAMERA OVM7690 I nitialize

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 85

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

SYS_STATUS st at us;
DRV_CAMERA_OVM7690_Dei niti al i ze(obj ect);

status = DRV_CAMERA OVMr690_St at us(obj ect);
if (SYS_MODULE_DEI NI TI ALI ZED ! = st at us)

{
/'l Check again later if you need to know
/1 when the driver is deinitialized.
}
Parameters
Parameters Description
object Driver object handle, returned from the DRV_CAMERA_OVM7690_Initialize function
Function

void DRV_CAMERA_OVM7690_Deinitialize(SYS_MODULE_OBJ object)

DRV_CAMERA_OVM7690_RegisterSet Function
Sets the camera OVM7690 configuration registers.
File

drv_camera_ovm7690.h

C
DRV_CAVERA OVMZ690_ERROR DRV_CAMERA OVM7690_Regi st er Set (DRV_CAMERA OVMr690_REQ STER_ADDRESS r egl ndex,
uint8_t regVal ue);
Returns
« DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE - Invalid driver Handle.
« DRV_CAMERA_OVM7690_ERROR_NONE - No error.
Description
This function sets the OVM7690 Camera configuration registers using the SCCB interface.
Remarks

This function can be used separately or within an interface.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.
The SCCB interface also must have been initialized to configure the OVM7690 Camera Driver.
Example
DRV_HANDLE handl e;
uint8_t regl2 = DRV_CAMERA OVM/690_REGL2_SOFT_RESET;

handl e = DRV_CAMERA OVM7690_Cpen(DRV_CAMERA OVMZ690_| NDEX_0, DRV_| O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_| NVALI D == handl e)

{
/lerror
return;
}
if (DRV_CAMERA OVM/690_Regi st er Set (DRV_CAMERA OVMF690_ REGL2_REG ADDR,
regl2) !'=
DRV_CAMERA OVM7690_ERROR_NONE)
{
/lerror
return;
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 86

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Parameters
Parameters Description
regindex Defines the OVM7690 configuration register addresses.
regValue Defines the register value to be set.

Function

DRV_CAMERA_OVM7690_ERROR DRV_CAMERA_OVM7690_RegisterSet

(
DRV_CAMERA_OVM7690_REGISTER_ADDRESS regindex,

uint8_t regValue

)

DRV_CAMERA_OVM7690 Tasks Function
Maintains the OVM7690 state machine.

File
drv_camera_ovm7690.h

C
voi d DRV_CAMERA OVMr690_Tasks(SYS_MODULE_OBJ object);

Function
void DRV_CAMERA_OVM7690_Tasks(SYS_MODULE_OBJ object);

b) Client Setup Functions

DRV_CAMERA_OVM7690_Open Function
Opens the specified OVM7690 Camera Driver instance and returns a handle to it.
File

drv_camera_ovm7690.h

C

DRV_HANDLE DRV_CAMERA _OVM7690_Open(const SYS_MODULE_| NDEX drvl ndex, const DRV_I O I NTENT iolntent);
Returns

If successful, the function returns a valid open instance handle (a number identifying both the caller and the module instance).

If an error occurs, the return value is DRV_HANDLE_INVALID. Errors can occur:

« if the number of client objects allocated via DRV_CAMERA_OVM7690_CLIENTS_NUMBER is insufficient

» if the client is trying to open the driver but driver has been opened exclusively by another client

 if the driver hardware instance being opened is not initialized or is invalid

« if the client is trying to open the driver exclusively, but has already been opened in a non exclusive mode by another client

 if the driver is not ready to be opened, typically when the initialize function has not completed execution
Description

This function opens the specified OVM7690 Camera Driver instance and provides a handle that must be provided to all other client-level

operations to identify the caller and the instance of the driver. The iolntent parameter defines how the client interacts with this driver instance.
Remarks

The handle returned is valid until the DRV_CAMERA_OVM7690_Close function is called. This function will NEVER block waiting for hardware.|f
the requested intent flags are not supported, the function will return DRV_HANDLE_INVALID. This function is thread safe in a RTOS application.

Preconditions
Function DRV_CAMERA_OVM7690_Initialize must have been called before calling this function.

Example
DRV_HANDLE handl e;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 87

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

handl e = DRV_CAMERA OVM/690_Cpen(DRV_CAMERA OVMZ690_| NDEX_0, DRV_| O_| NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_I NVALI D == handl e)

{
/1 Unable to open the driver
/1 May be the driver is not initialized or the initialization
/'l is not conplete.
}
Parameters
Parameters Description
index Identifier for the object instance to be opened
intent Zero or more of the values from the enumeration DRV_IO_INTENT "ORed" together to
indicate the intended use of the driver. See function description for details.
Function

DRV_HANDLE DRV_CAMERA_OVM7690_Open

(
const SYS_MODULE_INDEX index,

const DRV_IO_INTENT iolntent
)

DRV_CAMERA_OVM7690_Close Function
Closes an opened instance of the OVM7690 Camera Driver.
File

drv_camera_ovm7690.h

C
voi d DRV_CAMERA OVMr690_Cl ose(DRV_HANDLE handl e) ;

Returns
None.

Description
This function closes an opened instance of the OVM7690 Camera Driver, invalidating the handle. Any buffers in the driver queue that were
submitted by this client will be removed. After calling this function, the handle passed in "handle" must not be used with any of the remaining driver
routines (with one possible exception described in the "Remarks" section). A new handle must be obtained by calling
DRV_CAMERA_OVM7690_Open before the caller may use the driver again

Remarks

Usually there is no need for the client to verify that the Close operation has completed. The driver will abort any ongoing operations when this
function is called.

Preconditions
The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.

Example

DRV_HANDLE handle; // Returned from DRV_USART_Open
DRV_CAMERA_OVM7690_Cl ose(handl e) ;

Parameters

Parameters Description

handle A valid open instance handle, returned from the driver's Open function
Function

void DRV_CAMERA_OVM7690_Close(DRV_Handle handle)

¢) Camera-specific Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 88

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

DRV_CAMERA_OVM7690_FrameBufferAddressSet Function
Sets the framebuffer address.
File

drv_camera_ovm7690.h

C
DRV_CAMERA_OVM7690_ERROR DRV_CAMERA OVM7690_Fr aneBuf f er Addr essSet (DRV_HANDLE handl e, void * franeBuffer);
Returns
« DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE - Invalid driver Handle.
« DRV_CAMERA_OVM7690_ERROR_NONE - No error.
Description
This function will set the framebuffer address. This framebuffer address will point to the location at which frame data is to be rendered. This buffer
is shared with the display controller to display the frame on the display.
Remarks

This function is mandatory. A valid framebuffer address must be set to display the camera data.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.

Example

DRV_HANDLE handl e;
uint16_t frameBuffer[Dl SP_VER RESOLUTI ON] [DI SP_HOR_RESOLUTI ON] ;

handl e = DRV_CAMERA OVM/690_Open(DRV_CAVERA OVMZ690_| NDEX_0, DRV_I O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_I NVALI D == handl €)
{

/lerror

return;

}

if (DRV_CAMERA OVM7690_FranmeBuf f er AddressSet (handle, (void *) frameBuffer) !=
DRV_CAMERA_OVM7690_ERROR_NONE)

{
/lerror
return;
}
Parameters
Parameters Description
handle A valid open instance handle, returned from the driver's Open function
Function

DRV_CAMERA_OVM7690_ERROR DRV_CAMERA_OVM7690_FrameBufferAddressSet

DRV_HANDLE handle,
void * frameBuffer

)

DRV_CAMERA_OVM7690_FrameRectSet Function
Sets the frame rectangle set.
File

drv_camera_ovm7690.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 89

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

C
DRV_CAVERA OVM7690_ERROR DRV_CAMERA OVMF690_Fr ameRect Set (DRV_HANDLE handle, uint32_t left, uint32_t top,
uint32_t right, uint32_t botton;

Returns
* DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE - Invalid driver Handle.
« DRV_CAMERA_OVM7690_ERROR_NONE - No error.

Description
This function sets the frame rectangle coordinates. The frame within the rectangle is copied to the framebuffer. The left and top values are
expected to be less than right and bottom respectively. Left, top, right, and bottom values are also expected to be within range of screen
coordinates. Internally it calls the DRV_CAMERA_OVM7690_RegisterSet function to set the respective registers. The rectangle coordinates are
also maintained in the driver object.

Remarks

This function is optional if default values are expected to be used.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.
The SCCB interface also must have been initialized to configure the OVM7690 Camera Driver.

Example
DRV_HANDLE handl e;
uint32_t left = 0x69;
uint32_t top = OxOE;

uint32_t right = DI SP_HOR RESCLUTI ON + 0x69;
uint32_t bottom = DI SP_VER RESCLUTI ON + 0x69;

handl e = DRV_CAMERA OVM7690_Open(DRV_CAMERA _OVM7690_| NDEX_0, DRV_I O_| NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_| NVALI D == handl e)
{

/lerror

return;

}

if (DRV_CAMERA _OVMr690_FrameRect Set (handl e, left, top, right, bottom) !=
DRV_CAMERA_OVM7690_ERROR_NONE)

{
/lerror
return;
}
Parameters
Parameters Description
handle A valid open instance handle, returned from the driver's Open function
left left frame coordinate
top top frame coordinate
right right frame coordinate
bottom bottom frame coordinate
Function

DRV_CAMERA_OVM7690_ERROR DRV_CAMERA_OVM7690_FrameRectSet

DRV_HANDLE handle,
uint32_t left,
uint32_t top,
uint32_t right,
uint32_t bottom
)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 90

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

DRV_CAMERA_OVM7690_Start Function
Starts camera rendering to the display.
File

drv_camera_ovm7690.h

C
DRV_CAMERA_OVM7690_ERROR DRV_CAMERA OVM/690_St art (DRV_HANDLE handl e) ;
Returns
« DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE - Invalid driver Handle.
« DRV_CAMERA_OVM7690_ERROR_NONE - No error.
Description
This function starts the camera rendering to the display by writing the pixel data to the framebuffer. The framebuffer is shared between the
OVM7690 Camera and the display controller.
Remarks

This function is mandatory. Camera module will not update the framebuffer without calling this function.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.
DRV_CAMERA_OVM7690_FrameBufferAddressSet must have been called to set a valid framebuffer address.

Example

DRV_HANDLE handl e;
uint16_t frameBuffer[D SP_VER RESOLUTI ON] [DI SP_HOR_RESOLUTI ON] ;

handl e = DRV_CAMERA OVM/690_Open(DRV_CAVERA OVMZ690_| NDEX_0, DRV_I O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_ I NVALI D == handl €)
{

/lerror

return;

}

if (DRV_CAMERA OVM7690_FranmeBuf f er AddressSet (handl e, (void *) frameBuffer) !=
DRV_CAMERA_OVM7690_ERROR_NONE)
{
/lerror
return;

}

if (DRV_CAMERA OVM/690_Start(handle) !=
DRV_CAMERA OVM7690 ERROR_NONE)

{
/lerror
return;
}
Parameters
Parameters Description
handle A valid open instance handle, returned from the driver's Open function
Function

DRV_CAMERA_OVM7690_ERROR DRV_CAMERA_OVM7690_Start

DRV_HANDLE handle

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 91

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

DRV_CAMERA_OVM7690_Stop Function
Stops rendering the camera Pixel data.
File

drv_camera_ovm7690.h

C
DRV_CAMERA_OVM7690_ERROR DRV_CAMERA OVM/690_St op(DRV_HANDLE handl e) ;
Returns
« DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE - Invalid driver Handle.
« DRV_CAMERA_OVM7690_ERROR_NONE - No error.
Description
This function starts the camera rendering to the display by writing the pixel data to the framebuffer. The framebuffer is shared between the
OVM7690 Camera and the display controller.
Remarks

This function only disables the interrupt for HSYNC and VSYNC. To stop the camera the power-down pin needs to be toggled to an active-high
value., which will stop the camera internal clock and maintain the register values.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.

Example
DRV_HANDLE handl e;

handl e = DRV_CAVERA OVM/690_Open(DRV_CAVERA OVMZ690_| NDEX_0, DRV_I O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_I NVALI D == handl e)
{

/lerror

return;

}

if (DRV_CAMERA OVM/690_Stop(handle) !'=
DRV_CAMERA_OVM7690_ERROR_NONE)

{
/lerror
return;
}
Parameters
Parameters Description
handle A valid open instance handle, returned from the driver's Open function.
Function

DRV_CAMERA_OVM7690_ERROR DRV_CAMERA_OVM7690_Stop

DRV_HANDLE handle

d) Other Functions

DRV_CAMERA_OVM7690_HsyncEventHandler Function

Horizontal synchronization event handler.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 92

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

File
drv_camera_ovm7690.h
C
voi d DRV_CAMERA OVM7690_ HsyncEvent Handl er (SYS_MODULE_OBJ obj ect);
Returns
None.
Description

This function is called when the OVM7690 Camera sends a Horizontal Sync Pulse on the HSYNC line. It sets the next line address in the DMA
module.

Remarks
This function is mandatory.

Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.

Example
DRV_CAVERA OVM7690_I NI T caneral nit;
SYS_MODULE_OBJ obj ect Handl e;

cameral nit.caneral D
cameral nit.sourcePort

CAVERA_MODULE_OVM7690;
(voi d *) &PORTK,

caner al ni t. hsyncl nterrupt Source = | NT_SOURCE_CHANGE_NOTI CE_A,
caneral ni t.vsyncl nterrupt Source = | NT_SOURCE_CHANGE_NOTI CE_J,
caner al ni t. dmaChannel = DRV_CAMERA OVM7690_DMA CHANNEL_ | NDEX,

caneral nit.dmaTri gger Source
caneral nit. bpp

DMA_TRI GGER_EXTERNAL_2,
GFX_CONFI G_COLOR_DEPTH,

obj ect Handl e = DRV_CAMERA OVMr690_I ni ti al i ze(DRV_CAMERA OVM7690_I| NDEX O,
(SYS_MODULE_| NI T*) &caneral nit);

i f (SYS_MODULE_OBJ_| NVALI D == obj ect Handl €)

{

}

/1l Handl e error

handl e = DRV_CAVERA OVM7690_Cpen(DRV_CAMERA OVMZ690_| NDEX_0, DRV_| O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_| NVALI D == handl €)

{
/lerror
return;
}
void __ I SR(HSYNC | SR_VECTOR) _Ovn¥7690HSyncHandl er (voi d)
{
DRV_CAMERA_OVM7690_HsyncEvent Handl er (obj ect Handl e) ;
SYS_| NT_Sour ceSt at usd ear (HSYNC_| NTERRUPT_SOURCE) ;
}
Parameters
Parameters Description
object Driver object handle, returned from the DRV_CAMERA_OVM7690_Initialize function
Function

void DRV_CAMERA_OVM7690_HsyncEventHandler(SYS_MODULE_OBJ object)

DRV_CAMERA_OVM7690_VsyncEventHandler Function
Vertical synchronization event handler .

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 93

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

File

drv_camera_ovm7690.h
C

voi d DRV_CAMERA OVM7690_VsyncEvent Handl er (SYS_MODULE_OBJ obj ect);
Returns

None.
Description

This function is called when the OVM7690 Camera sends a Vertical Sync Pulse on the VSYNC line. It clears the number of lines drawn variable.
Remarks

This function is mandatory.
Preconditions

The DRV_CAMERA_OVM7690_Initialize function must have been called for the specified OVM7690 Camera Driver instance.
DRV_CAMERA_OVM7690_Open must have been called to obtain a valid opened device handle.

Example
DRV_CAMERA_OVM7690_I NI T caneralnit;
SYS_MODULE_0OBJ obj ect Handl e;

caneral nit.caneral D CAMERA MODULE_OVMZ690;

caneral nit. sourcePort (void *) &PORTK,

caner al ni t. hsyncl nt err upt Sour ce = | NT_SOURCE_CHANGE_NOTI CE_A,

caneral ni t.vsyncl nt errupt Source = | NT_SOURCE_CHANGE_NOTI CE_J,

caner al ni t. dmaChannel DRV_CAMERA_OVM7690_DNMA CHANNEL_| NDEX,
caneral ni t.dmaTri gger Sour ce DVA TRI GGER_EXTERNAL_2,

caneral nit. bpp GFX_CONFI G_COLOR_DEPTH,

obj ect Handl e = DRV_CAMERA OVM/690 | nitialize(DRV_CAMERA OVM/690_| NDEX O,
(SYS_MODULE_I NI T*) &caneral nit);

if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)

{

}

/1 Handl e error

handl e = DRV_CAVERA OVMZ690_Cpen(DRV_CAMERA OVMZ690_| NDEX_0, DRV_| O_| NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE_I NVALI D == handl e)

{
/lerror
return;
}
void __ISR(VSYNC_ | SR VECTOR) _Ovn¥690VSyncHandl er (voi d)
{
DRV_CAVMERA_OVMZ690_VsyncEvent Handl er (obj ect Handl e) ;
SYS | NT_Sour ceSt at usCl ear (VSYNC_| NTERRUPT_SOURCE) ;
}
Parameters
Parameters Description
object Driver object handle, returned from the DRV_CAMERA_OVM7690_Initialize function
Function

void DRV_CAMERA_OVM7690_VsyncEventHandler(SYS_MODULE_OBJ object)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 94

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

_DRV_CAMERA_OVM7690_DMAEventHandler Function
File
drv_camera_ovm7690.h

C

voi d _DRV_CAMERA OVM7690_DMAEvent Handl er (SYS_DVA_TRANSFER_EVENT event, SYS_DVA CHANNEL_HANDLE handl e,
uintptr_t contextHandl e);

Description
This is function _DRV_CAMERA_OVM7690_DMAEventHandler.

_DRV_CAMERA_OVM7690_delayMS Function
File
drv_camera_ovm7690.h

C
voi d _DRV_CAMERA OVMr690_del ayMs(unsi gned int del ayMs);

Description
This is function _DRV_CAMERA_OVM7690_delayMS.

_DRV_CAMERA_OVM7690_HardwareSetup Function

File
drv_camera_ovm7690.h

C
voi d _DRV_CAMERA OVMr690_Har dwar eSet up(DRV_CAVERA OVMZ690_OBJ * dCbj);

Description
This is function _DRV_CAMERA_OVM7690_HardwareSetup.

e) Data Types and Constants

DRV_CAMERA_OVM7690_CLIENT_OBJ Structure
OVM7690 Camera Driver client object.
File

drv_camera_ovm7690.h

C
typedef struct {
DRV_CAMERA OVMr690_OBJ * hDri ver;
DRV_I O_I NTENT i ol ntent;
bool inUse;
DRV_CAMERA_OVM7690_ERROR error;
DRV_CAMERA OVMr690_CLI ENT_STATUS st at us;
} DRV_CAMERA_OVMr690_CLI ENT_OBJ;
Members
Members Description
DRV_CAMERA_OVM7690_OBJ * hDriver; The hardware instance object associated with the client
DRV_IO_INTENT iolntent; The I/0 intent with which the client was opened
bool inUse; This flags indicates if the object is in use or is available
DRV_CAMERA_OVM7690_ERROR error; Driver Error

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 95

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_CAMERA_OVM7690_CLIENT_STATUS Client status
status;

Description

OVM7690 Camera Driver Client Object.
This structure provides a definition of the OVM7690 Camera Driver client object.

Remarks
These values are been updated into the DRV_CAMERA_OVM7690_0Open function.

DRV_CAMERA_OVM7690_CLIENT_STATUS Enumeration
Identifies OVM7690 Camera possible client status.
File

drv_camera_ovm7690.h

Camera Driver Libraries

C
typedef enum {
DRV_CAVMERA_OVMZ690_CLI ENT_STATUS_ERROR = DRV_CLI ENT_STATUS_ERRCR,
DRV_CAMERA OVM7690_CLI ENT_STATUS_CLOSED = DRV_CLI ENT_STATUS_CLGOSED,
DRV_CAMERA OVM7690_CLI ENT_STATUS_BUSY = DRV_CLI ENT_STATUS_BUSY,
DRV_CAMERA OVM7690_CLI ENT_STATUS READY = DRV_CLI ENT_STATUS_ READY
} DRV_CAMERA OVM7690_CLI ENT_STATUS;
Members
Members Description
DRV_CAMERA_OVM7690_CLIENT_STATUS_ERROR | An error has occurred.
=DRV_CLIENT_STATUS_ERROR
DRV_CAMERA_OVM7690_CLIENT_STATUS_CLOSED | The driver is closed, no operations for this client are ongoing, and/or the given handle
=DRV_CLIENT_STATUS_CLOSED is invalid.
DRV_CAMERA_OVM7690_CLIENT_STATUS_BUSY = |The driver is currently busy and cannot start additional operations.
DRV_CLIENT_STATUS_BUSY
DRV_CAMERA_OVM7690_CLIENT_STATUS_READY | The module is running and ready for additional operations
=DRV_CLIENT_STATUS_READY
Description
OVM7690 Camera Client Status.
This enumeration defines possible OVM7690 Camera Client Status.
Remarks

This enumeration values are set by driver interfaces: DRV_CAMERA_OVM7690_Open and DRV_CAMERA_OVM7690_Close.

DRV_CAMERA_OVM7690_ERROR Enumeration
Identifies OVM7690 Camera possible errors.

File
drv_camera_ovm7690.h

C

typedef enum {
DRV_CAMERA OVM7690_ERROR | NVALI D_HANDLE,
DRV_CAMERA OVMF690_ERROR_NONE

} DRV_CAMERA OVMF690_ ERROR,

Members

Members Description

DRV_CAMERA_OVM7690_ERROR_INVALID_HANDLE OVM7690 Camera Driver Invalid Handle
DRV_CAMERA_OVM7690_ERROR_NONE OVM7690 Camera Driver error none

Description
OVM7690 Camera Error flag

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

96

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

This enumeration defines possible OVM7690 Camera errors.

Remarks

This enumeration values are returned by driver interfaces in case of errors.

DRV_CAMERA_OVM7690_INIT Structure
OVM7690 Camera Driver initialization parameters.
File

drv_camera_ovm7690.h

C
typedef struct {
CAMERA_MODULE | D caner al D;
void * sourcePort;
PORTS_CHANNEL hsyncChannel ;
PORTS_BI T_PCS hsyncPosi tion;
PORTS_CHANNEL vsyncChannel ;
PORTS_BI T_PCS vsyncPosi tion;
I NT_SOURCE hsyncl nt err upt Sour ce;
I NT_SOURCE vsyncl nt errupt Sour ce;
DVA_CHANNEL dnaChannel ;
DVA_TRI GGER_SOURCE dnaTri gger Sour ce;
uint16_t bpp;
} DRV_CAMERA_OVM7690_I NI'T;
Members
Members Description
CAMERA_MODULE_ID cameralD; Camera module ID
void * sourcePort; Source Port Address
PORTS_CHANNEL hsyncChannel, HSYNC pin channel
PORTS_BIT_POS hsyncPosition; HSYNC pin bit position
PORTS_CHANNEL vsyncChannel; VSYNC pin channel
PORTS_BIT_POS vsyncPosition; VSYNC pin bit position
INT_SOURCE hsynclinterruptSource; HSYNC Interrupt Source
INT_SOURCE vsynclinterruptSource; VSYNC Interrupt Source
DMA_CHANNEL dmaChannel; DMA channel
DMA_TRIGGER_SOURCE dmaTriggerSource; DMA trigger source
uintl6_t bpp; Bits per pixel
Description
OVM7690 Camera Initialization parameters
This structure defines OVM7690 Camera Driver initialization parameters.
Remarks

These values should be passed into the DRV_CAMERA_OVM7690_Initialize function.

DRV_CAMERA_OVM7690_OBJ Structure
OVM7690 Camera Driver instance object.
File
drv_camera_ovm7690.h

C

typedef struct {
CAMERA_MODULE | D nmodul el d;
SYS_STATUS st at us;
bool inUse;
bool i sExcl usive;
size_t ndients;
PORTS_CHANNEL hsyncChannel ;
PORTS_BI T_PCS hsyncPosi tion;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 97

Volume V: MPLAB Harmony Framework

PORTS_CHANNEL vsyncChannel ;
PORTS_BI T_PCS vsyncPosi tion;

I NT_SOURCE hsyncl nt errupt Sour ce;
I NT_SOURCE vsyncl nt errupt Sour ce;
SYS_DVA_CHANNEL_HANDLE dmaHandl e;
DMA CHANNEL dmaChannel ;

DMA_ TRI GGER_SOURCE dmaTr i gger Sour ce;

bool dmaTransfer Conpl et e;
void * sourcePort;
uint32_t franeLi neCount;
uint32_t franelLi neSize;
void * frameLi neAddress;
void * franeBufferAddress;
DRV_CAMERA_OVM7690_RECT rect;
uint16_t bpp;

} DRV_CAMERA_OVM7690_0BJ;

Members

Members
CAMERA_MODULE_ID moduleld;
SYS_STATUS status;

bool inUse;

bool isExclusive;

size_t nClients;

PORTS_CHANNEL hsyncChannel;
PORTS_BIT_POS hsyncPosition;
PORTS_CHANNEL vsyncChannel;
PORTS_BIT_POS vsyncPosition;
INT_SOURCE hsynclinterruptSource;
INT_SOURCE vsyncinterruptSource;
SYS_DMA_CHANNEL_HANDLE dmaHandle;
DMA_CHANNEL dmaChannel;
DMA_TRIGGER_SOURCE dmaTriggerSource;
bool dmaTransferComplete;

void * sourcePort;

uint32_t frameLineCount;

uint32_t frameLineSize;

void * frameLineAddress;

void * frameBufferAddress;
DRV_CAMERA_OVM7690_RECT rect;
uint16_t bpp;

Description
OVM7690 Camera Driver Instance Object

Driver Libraries Help

Description

The module index associated with the object
The status of the driver

Flag to indicate this object is in use

Flag to indicate that driver has been opened exclusively.

Keeps track of the number of clients
« that have opened this driver
HSYNC pin channel

HSYNC pin bit position
VSYNC pin channel
VSYNC pin bit position
HSYNC Interrupt Source
VSYNC Interrupt Source
DMA Handle

Read DMA channel
DMA Trigger Source
DMA Transfer Complete Flag
Source Port Address
Frame Line Count
Frame Line Size

Frame Line Address
Framebuffer Address
Window Rectangle

Bits per pixel supported

This structure provides a definition of the OVM7690 Camera Driver instance object.

Remarks

These values are been updated into the DRV_CAMERA_OVM7690_Initialize function.

DRV_CAMERA_OVM7690_RECT Structure
OVM7690 Camera window rectangle coordinates.
File
drv_camera_ovm7690.h

C

typedef struct {
uint32_t left;
uint32_t top;
uint32_t right;
uint32_t bottom

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Camera Driver Libraries

98

Volume V: MPLAB Harmony Framework Driver Libraries Help

} DRV_CAMVERA OVM7690_RECT;

Members
Members Description
uint32_t left; OVM7690 Camera Window left coordinate
uint32_t top; OVM7690 Camera Window top coordinate
uint32_t right; OVM7690 Camera Window right coordinate
uint32_t bottom; OVM7690 Camera Window bottom coordinate
Description

OVM7690 Camera Window Rect
This structure defines window rectangle co-ordinates as left, right, top, and bottom.

Remarks
These values should be passed into the DRV_CAMERA_OVM7690_FrameRectSet function.

DRV_CAMERA_OVM7690_REG12_OP_FORMAT Enumeration
Lists OVM7690 Camera device register addresses.
File

drv_camera_ovm7690.h

C

typedef enum {

DRV_CAMERA_OVM7690_REGL2_OP_FORMAT_RAW 2

} DRV_CAMERA OVMI690 REGL2_OP_FORVAT;
Members

Members Description

DRV_CAMERA_OVM7690_REG12_OP_FORMAT_RAW_2 Bayer Raw Format
Description

OVM7690 Camera Device Register Addresses.

This enumeration defines the list of device register addresses.
Remarks

These constants should be used in place of hard-coded numeric literals. These values should be passed into the
DRV_CAMERA_OVM7690_RegisterSet function. Refer to the specific device data sheet for more information.

DRV_CAMERA_OVM7690_INDEX_0 Macro
OVM7690 driver index definitions.

File
drv_camera_ovm7690.h

C
#def i ne DRV_CAMERA_OVMZ690_I| NDEX_0 0
Description

OVM7690 Camera Driver Module Index
These constants provide OVM7690 Camera Driver index definitions.

Remarks

These constants should be used in place of hard-coded numeric literals. These values should be passed into the
DRV_CAMERA_OVM7690_|Initialize and DRV_CAMERA_OVM7690_Open routines to identify the driver instance in use.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Camera Driver Libraries

99

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_CAMERA_OVM7690_INDEX_1 Macro
File
drv_camera_ovm7690.h

C
#define DRV_CAVERA OVM7690_| NDEX_ 1 1

Description
This is macro DRV_CAMERA_OVM7690_INDEX_1.

DRV_CAMERA_OVM7690_REG12_SOFT_RESET Macro
OVM7690 Camera Driver Register 0x12 Soft reset flag.

File
drv_camera_ovm7690.h

C
#define DRV_CAVERA OVM7690_ REGL2 SOFT_RESET

Description

OVM7690 Camera Driver Soft reset flag.
This macro provides a definition of the OVM7690 Camera Register 0x12 Soft reset flag.

Remarks

These constants should be used in place of hard-coded numeric literals.

DRV_CAMERA_OVM7690_SCCB_READ_ID Macro
OVM7690 Camera SCCB Interface device Read Slave ID.
File
drv_camera_ovm7690.h

C
#def i ne DRV_CAMERA OVMZ690_SCCB_READ | D

Description
OVM7690 Camera Driver SCCB Read ID

This macro provides a definition of the OVM7690 Camera SCCB Interface device Read Slave ID.

Remarks

These constants should be used in place of hard-coded numeric literals.

DRV_CAMERA_OVM7690_SCCB_WRITE_ID Macro
OVM7690 Camera SCCB Interface device Write Slave ID.
File
drv_camera_ovm7690.h

C
#def i ne DRV_CAVERA OVMZ690_SCCB WRI TE_I D

Description
OVM7690 Camera Driver SCCB Write ID

This macro provides a definition of the OVM7690 Camera SCCB Interface device Write Slave ID.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Camera Driver Libraries

100

Volume V: MPLAB Harmony Framework Driver Libraries Help Camera Driver Libraries

Remarks

These constants should be used in place of hard-coded numeric literals. These values should be passed into the
DRV_CAMERA_OVM7690_RegisterSet function to identify the OVM7690 Camera SCCB Interface device Write Slave ID.

Files
Files
Name Description
drv_camera_ovm7690.h OVM7690 Camera Driver local data structures.
drv_ovm7690_config_template.h OVM7690 Device Driver configuration template.
Description

drv_camera_ovm7690.h
OVM7690 Camera Driver local data structures.

Enumerations

Name Description
DRV_CAMERA_OVM7690_CLIENT_STATUS Identifies OVM7690 Camera possible client status.
DRV_CAMERA_OVM7690_ERROR Identifies OVM7690 Camera possible errors.

DRV_CAMERA_OVM7690_REG12_OP_FORMAT Lists OVM7690 Camera device register addresses.

Functions
Name Description
¢ _DRV_CAMERA_OVM7690_delayMS This is function _DRV_CAMERA_OVM7690_delayMS.
¢ _DRV_CAMERA_OVM7690_DMAEventHandler This is function _DRV_CAMERA_OVM7690_DMAEventHandler.
¢ _DRV_CAMERA_OVM7690_HardwareSetup This is function _DRV_CAMERA_OVM7690_HardwareSetup.
¢ DRV_CAMERA_OVM7690_Close Closes an opened instance of the OVM7690 Camera Driver.
¢ DRV_CAMERA_OVM7690_Deinitialize Deinitializes the specified instance of the OVM7690 Camera Driver module.
¢ DRV_CAMERA_OVM7690_FrameBufferAddressSet Sets the framebuffer address.
@ DRV_CAMERA_OVM7690_FrameRectSet Sets the frame rectangle set.
¢ DRV_CAMERA_OVM7690_HsyncEventHandler Horizontal synchronization event handler.
@ DRV_CAMERA_OVM7690_Initialize Initializes the OVM7690 Camera instance for the specified driver index.
¢ DRV_CAMERA_OVM7690_Open Opens the specified OVM7690 Camera Driver instance and returns a handle
to it.
@ DRV_CAMERA_OVM7690_RegisterSet Sets the camera OVM7690 configuration registers.
@ DRV_CAMERA_OVM7690_Start Starts camera rendering to the display.
¢ DRV_CAMERA_OVM7690_Stop Stops rendering the camera Pixel data.
¢ DRV_CAMERA_OVM7690_Tasks Maintains the OVM7690 state machine.
¢ DRV_CAMERA_OVM7690_VsyncEventHandler Vertical synchronization event handler .
Macros
Name Description
DRV_CAMERA_OVM7690_INDEX_0 OVM7690 driver index definitions.
DRV_CAMERA_OVM7690_INDEX_1 This is macro DRV_CAMERA_OVM7690_INDEX_1.
DRV_CAMERA_OVM7690_REG12_SOFT_RESET OVM7690 Camera Driver Register 0x12 Soft reset flag.
DRV_CAMERA_OVM7690_SCCB_READ_ID OVM7690 Camera SCCB Interface device Read Slave ID.
DRV_CAMERA_OVM7690_SCCB_WRITE_ID OVM7690 Camera SCCB Interface device Write Slave ID.
Structures
Name Description
DRV_CAMERA_OVM7690_CLIENT_OBJ OVM7690 Camera Driver client object.
DRV_CAMERA_OVM7690_INIT OVM7690 Camera Driver initialization parameters.
DRV_CAMERA_OVM7690_0OBJ OVM7690 Camera Driver instance object.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 101

Volume V: MPLAB Harmony Framework Driver Libraries Help CAN Diriver Library

DRV_CAMERA_OVM7690_RECT OVM7690 Camera window rectangle coordinates.

Description

OVM7690 Camera Driver Local Data Structures
This header file provides the local data structures for the OVM7690 Camera Driver Library.

File Name

drv_camera_ovm7690.h

Company

Microchip Technology Inc.

drv_ovm7690_config_template.h
OVM7690 Device Driver configuration template.
Macros

Name Description
DRV_OVM7690_INTERRUPT_MODE Controls operation of the driver in the interrupt or polled mode.

Description

OVM7690 Device Driver Configuration Template

This header file contains the build-time configuration selections for the OVM7690 device driver. This is the template file which give all possible
configurations that can be made. This file should not be included in any project.

File Name

drv_ovm7690_config_template.h

Company

Microchip Technology Inc.

CAN Driver Library

This section describes the CAN Driver Library.

Introduction
The CAN Static Driver provides a high-level interface to manage the CAN module on the Microchip family of microcontrollers.

Description

Through MHC, this driver provides an API to initialize the CAN module, as well as the baud rate. The API also allows simple transmit and receive
functionality.

Library Interface

Function(s)

Name Description

¢ DRV_CAN_ChannelMessageReceive Receives a message on a channel for the specified driver index.
Implementation: Static

¢ DRV_CAN_ChannelMessageTransmit| Transmits a message on a channel for the specified driver index.
Implementation: Static

¢ DRV_CAN_Close Closes the CAN instance for the specified driver index.
Implementation: Static

@ DRV_CAN_Deinitialize Deinitializes the DRV_CAN_Initialize instance that has been called for the specified driver
index.
Implementation: Static

@ DRV_CAN_Initialize Initializes the CAN instance for the specified driver index.

Implementation: Static

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 102

Volume V: MPLAB Harmony Framework Driver Libraries Help CAN Diriver Library

¢ DRV_CAN_Open Opens the CAN instance for the specified driver index.
Implementation: Static

Description

This section describes the Application Programming Interface (API) functions of the CAN Driver Library.

Function(s)

DRV_CAN_ChannelMessageReceive Function

Receives a message on a channel for the specified driver index.
Implementation: Static

File

help_drv_can.h

C
bool DRV_CAN_Channel MessageRecei ve(CAN_CHANNEL channel Num int address, uint8_t DLC, uint8_t* message);
Returns
« true - When a message has been received
« false - When a message has not been received
Description
This routine receives data into a buffer from the CAN bus according to the channel, address, and data length given.
Remarks

This routine receives a standard or extended messages based upon the CAN Driver setup.

Preconditions
DRV_CAN_Initialize has been called.

Parameters

Parameters Description

CAN_CHANNEL channelNum CAN channel to use

int address CAN address to receive on

uint8_t DLC Data Length Code of Message

uint8_t* message Pointer to put the message data to receive
Function

bool DRV_CAN_ChannelMessageReceive(CAN_CHANNEL channelNum, int address,
uint8_t DLC, uint8_t* message);

DRV_CAN_ChannelMessageTransmit Function

Transmits a message on a channel for the specified driver index.
Implementation: Static

File
help_drv_can.h

C
bool DRV_CAN_Channel MessageTransmni t (CAN_CHANNEL channel Num int address, uint8_t DLC, uint8_t* nessage);

Returns

Boolean "true" when a message has been transmitted.

Description

This routine transmits a data buffer on the CAN bus according to the channel, address, and data length given.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

103

Volume V: MPLAB Harmony Framework Driver Libraries Help CAN Diriver Library

Remarks

This routine receives a standard or extended messages based upon the CAN Driver setup.
Preconditions

DRV_CAN_Initialize has been called.

Parameters
Parameters Description
CAN_CHANNEL channelNum CAN channel to use
int address CAN address to transmit on
uint8_t DLC Data Length Code of Message
uint8_t* message Pointer to the message data to send
Function

bool DRV_CAN_ChannelMessageTransmit(CAN_CHANNEL channelNum, int address,
uint8_t DLC, uint8_t* message);

DRV_CAN_Close Function

Closes the CAN instance for the specified driver index.
Implementation: Static

File

help_drv_can.h
C

voi d DRV_CAN _C ose();
Returns

None.
Description

This routine closes the CAN driver instance for the specified driver instance, making it ready for clients to use it.
Preconditions

DRV_CAN_Initialize has been called.
Function

void DRV_CAN_Close(void)

DRV_CAN_Deinitialize Function

Deinitializes the DRV_CAN_Initialize instance that has been called for the specified driver index.
Implementation: Static

File

help_drv_can.h
C

void DRV_CAN Deinitialize();
Returns

None.

Description

This routine deinitializes the CAN Driver instance for the specified driver instance, making it ready for clients to use it. The initialization routine is
specified by the MHC parameters.

Preconditions

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 104

Volume V: MPLAB Harmony Framework Driver Libraries Help

Function
void DRV_CAN_Deinitialize(void)

DRV_CAN_Initialize Function

Initializes the CAN instance for the specified driver index.
Implementation: Static

File
help_drv_can.h

C
void DRV_CAN Initialize();

Returns

None.

Description

Codec Driver Libraries

This routine initializes the CAN Driver instance for the specified driver instance, making it ready for clients to use it. The initialization routine is

specified by the MHC parameters.

Remarks

This routine must be called before any other CAN routine is called. This routine should only be called once during system initialization.

Preconditions

None.

Function
void DRV_CAN_ Initialize(void)

DRV_CAN_Open Function

Opens the CAN instance for the specified driver index.
Implementation: Static

File

help_drv_can.h
C

voi d DRV_CAN Open();
Returns

None.

Description

This routine opens the CAN Driver instance for the specified driver instance, making it ready for clients to use it.

Preconditions
DRV_CAN_Initialize has been called.

Function
void DRV_CAN_Open(void)

Codec Driver Libraries

This section describes the Codec Driver Libraries available in MPLAB Harmony.

AK4384 Codec Driver Library

This topic describes the AK4384 Codec Driver Library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

105

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Introduction

This library provides an interface to manage the AK4384 106 dB 192 kHz 24-Bit DAC that is serially interfaced to a Microchip microcontroller for
providing Audio Solutions.
Description

The AK4384 module is 24-bit Audio DAC from Asahi Kasei Microdevices Corporation. The AK4384 can be interfaced to Microchip microcontrollers
through SPI and I12S serial interfaces. SPI interface is used for control command transfer. The 12S interface is used for Audio data output.

A typical interface of AK4384 to a Microchip PIC32 device is provided in the following diagram:

Ports Interface PDN
SCK CCLE
SPI Interface ssL s
SDO CoT
PIC32 * AK4384 DAC
12S interface REFCLK MCLK;
Controlled
(BCLK BICK |
through Audio
modes of SPI |LRCK LRCK)
module) sDO DT

Features

The AK4384 Codec Driver supports the following features:
» Sampling Rate Ranging from 8 kHz to 192 kHz
« 128 times Oversampling (Normal Speed mode)
e 64 times Oversampling (Double Speed mode)
» 32 times Oversampling (Quad Speed mode)
« Digital de-emphasis for 32k, 44.1k and 48 kHz sampling
» Soft mute
« Digital Attenuator (Linear 256 steps)
* |/F format:
e 24-bit MSB justified
e 24/20/16-bit LSB justified
e 12S
» Master clock:
e 256fs, 384 fs, 512 fs, 768 fs, or 1152 fs (Normal Speed mode)
e 128fs, 192 fs, 256 fs, or 384 fs (Double Speed mode)
e 128 fsor 192 fs (Quad Speed mode)

Using the Library
This topic describes the basic architecture of the AK4384 Codec Driver Library and provides information and examples on its use.

Description

Interface Header File: dr v_ak4384. h

The interface to the AK4384 Codec Driver library is defined in the dr v_ak4384. h header file. Any C language source (. c) file that uses the
AK4384 Codec Driver library should include this header.

Please refer to the What is MPLAB Harmony? section for how the driver interacts with the framework.

Abstraction Model

This library provides a low-level abstraction of the AK4384 Codec Driver Library on the Microchip family microcontrollers with a convenient C
language interface. This topic describes how that abstraction is modeled in software and introduces the library's interface.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 106

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Description

The abstraction model shown in the following diagram depicts how the AK4384 Codec Driver is positioned in the MPLAB Harmony framework. The
AK4384 Codec Driver uses the SPI and I12S drivers for control and audio data transfers to the AK4384 module.

AK4384 Driver Abstraction Model

[Application]

A

System Services

(Audio, Interrupt, DMA, ...)

AK4384 Codec Driver J

12S Driver SPI Driver

A Y

Peripheral Library Layer (SPI, Ports, Timer, etc.)

Hardware (SPI, Ports, Timer, etc.)

Library Overview

Refer to the Driver Library Overview section for information on how the driver operates in a system.

The AK4384 Codec Driver Library provides an API interface to transfer control commands and digital audio data to the serially interfaced AK4384
DAC module. The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the
AK4384 Codec Driver Library.

Library Interface Section Description

System Functions Provides system module interfaces, device initialization, deinitialization,
reinitialization, tasks and status functions.

Client Setup Functions Provides open and close functions.

Codec Specific Functions Provides functions that are Codec-specific.

Data Transfer Functions Provides data transfer functions.

Other Functions Provides driver specific miscellaneous functions such as sampling rate setting, control

command functions, etc.

Data Types and Constants These data types and constants are required while interacting and setting up the
AK4384 Codec Driver Library.

How the Library Works

The library provides interfaces to support:
» System Functionality

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 107

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

e Client Functionality

System Access
This topic provides information on system initialization, implementations, and provides a system access code example.

Description

System Initialization

The system performs the initialization of the device driver with settings that affect only the instance of the device that is being initialized. During
system initialization, each instance of the AK4384 module would be initialized with the following configuration settings (either passed dynamically
at run time using DRV_AK4384_INIT or by using Initialization Overrides) that are supported by the specific AK4384 device hardware:

» Device requested power state: one of the System Module Power States. For specific details please refer to Data Types and Constants in the
Library Interface section.

e SPI driver module index. The module index should be same as the one used in initializing the SPI Driver.
e 12S driver module index. The module index should be same as the one used in initializing the 12S Driver.
e Sampling rate

* Master clock detection mode

« Power down pin port initialization

¢ Queue size for the audio data transmit buffer

The DRV_AKA4384_Initialize API returns an object handle of the type SYS_MODULE_OBJ. The object handle returned by the Initialize interface
would be used by the other system interfaces such as DRV_ AK4384_Deinitialize, DRV_ AK4384_Status and DRV_I2S_Tasks.

Implementations

The AK4384 Codec Driver can have the following implementations:

Implementation Description MPLAB Harmony Components

Implementation | Dedicated hardware for control (SPI) and data Standard MPLAB Harmony drivers for SPI and 12S interfaces.

1 (12S) interface.

Implementation | Dedicated hardware for data (12S) interface. Standard MPLAB Harmony drivers for 12S interface.

2 Ports pins for control interface. Virtual MPLAB Harmony drivers for SPI interface.

Implementation | Dedicated hardware for data (I12S) interface. Standard MPLAB Harmony drivers for 12S interface.

3 Ports pins for control. An internal bit-banged implementation of control interface in the AK4384

Codec Driver.

If Implementation 3 is in use, while initializing fields of DRV_AK4384_INIT structure, the SPI Driver module index initialization is redundant. The
user can pass a dummy value.

For Implementation 3, the user has to additionally initialize parameters to support bit-banged control interface implementation. These additional
parameters can be passed by assigning values to the respective macros in syst em confi g. h.

Example:
DRV_AK4384_I NI T drvak4384lnit =
{
.modul el nit.val ue = SYS MODULE POWER_RUN_FULL,
.volune = 120,
. cl kMbde = DRV_AK4384_MCLK_MODE_MANUAL,
. queueSi zeTransnit = 2,

}s

/*

The SPI nodul e i ndex should be sane as the one used in
initializing the SPI driver.

The SPI nodule index initialization is redundant

if Inplementation 3 is in use.

*
/

drvak4384l nit. spiDriverMdul el ndex = DRV_SPI _| NDEX_0;

/*
The 12S nodul e i ndex should be sane as the one used in
initializing the 12S driver.
*
/
drvak4384lnit.i2sDriverMdul el ndex = DRV_I 2S_| NDEX_0;

ak4384DevObj ect = DRV_AK4384 I nitial i ze(DRV_AK4384 | NDEX 0, (SYS MODULE INIT *) &drvak4384lnit);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 108

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

if (SYS_MODULE OBJ_| NVALI D == ak4384DevCbj ect)
{

}

/1l Handl e error

Task Routine
The DRV_AK4384_Tasks will be called from the System Task Service.

Client Access
This topic describes client access and includes a code example.

Description

For the application to start using an instance of the module, it must call the DRV_AK4384_0Open function. The DRV_AK4384_Open provides a
driver handle to the AK4384 Codec Driver instance for operations. If the driver is deinitialized using the function DRV_AK4384_Deinitialize, the
application must call the DRV_AK4384_Open function again to set up the instance of the driver.

For the various options available for IO_INTENT, please refer to Data Types and Constants in the Library Interface section.

It is necessary to check the status of driver initialization before opening a driver instance. The status of the AK4384 Codec Driver
Note: can be known by calling DRV_AK4384_Status.

Example:
DRV_HANDLE handl e;
SYS_STATUS ak4384St at us;
ak4384St at us = DRV_AKA4384_St at us(sysObj ect s. ak4384Dev(hbj ect) ;
i f (SYS_STATUS_READY == ak4384St at us)

{
/1 The driver can now be opened.
appDat a. ak4384C i ent. handl e = DRV_AK4384_Qpen
(DRV_AK4384_| NDEX_0, DRV_I O_| NTENT_EXCLUSI VE) ;
i f (appDat a. ak4384C i ent. handl e ! = DRV_HANDLE_| NVALI D)
{
appDat a. state = APP_STATE AK4384_SET_BUFFER_HANDLER;
}
el se
{
SYS DEBUG 0, "Find out what's wong \r\n");
}
}
el se
{
/* AKA384 Driver |s not ready */
}

Client Operations
This topic describes client operations and provides a code example.

Description

Client operations provide the API interface for control command and audio data transfer to the AK4384 Codec.
The following AK4384 Codec specific control command functions are provided:

1. The calling and execution of the following functions does not guarantee that the function (and its associated Codec
Notes: command) has been set in the Codec peer interfaced through the SPI. It just means that the submission of the command has
started over the SPI.

2. Regarding Note 1, the user should not call the following functions consecutively, which could result in unexpected behavior. If
needed, the user should confirm the completion status of a function before calling any of the other functions.

3. To know the completion status of the following functions, users can register a command event callback handler by calling the
function ‘DRV_AK4384_CommandEventHandlerSet'. The callback handler will be called when the last submitted command
(submitted by calling one of the following functions) has completed.

¢ DRV_AK4384_SamplingRateSet
« DRV_AK4384_SamplingRateGet
» DRV_AK4384_VolumeSet

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 109

Volume V: MPLAB Harmony Framework

DRV_AK4384_VolumeGet

DRV_AK4384 MuteOn
DRV_AK4384_MuteOff
DRV_AK4384_ZeroDetectEnable
DRV_AK4384_ZeroDetectDisable
DRV_AK4384_ZeroDetectModeSet
DRV_AK4384_ZeroDetectlnvertEnable
DRV_AK4384_ZeroDetectlnvertDisable
DRV_AK4384_ChannelOutputinvertEnable
DRV_AK4384_ChannelOutputinvertDisable
DRV_AK4384_SlowRollOffFilterEnable
DRV_AK4384_SlowRollOffFilterDisable
DRV_AK4384_DeEmphasisFilterSet

Driver Libraries Help

Codec Driver Libraries

These functions schedule a non-blocking control command transfer operation. These functions submit the control command request to the AK4384
Codec. A notification for the submitted requests can be received by registering a command callback event with the driver. The driver notifies by

calling the callback on successfully transmitting the command to the AK4384 Codec module.

The function DRV_AK4384_BufferAddWrite is a buffered data operation functions. This function schedules non-blocking audio data transfer
operation. The function adds the request to the hardware instance queues and returns a buffer handle. The requesting client also registers a

callback event with the driver. The driver notifies the client with DRV_AK4384 BUFFER_EVENT_COMPLETE,
DRV_AK4384 BUFFER_EVENT_ERROR, or DRV_AK4384 BUFFER_EVENT_ABORT events.

The submitted control commands and audio buffer add requests are processed under DRV_AK4384_Tasks function. This function is called from
the SYS_Tasks routine.

The following diagram illustrates the control commands and audio buffered data operations.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

110

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Open Client

1

I| Set Sampling I

| Rate |
[|
y \ 4
Set Buffer Event Set Command
Handler Event Handler
A A 4
Add Audio Data Submit Control
Buffer Command

Process Control Command and
Audio Data Buffer by calling
DRV_AK4384 _Tasks from

SYS_Tasks
Complete/Abort/Error Complete
A\ 4
Buffer Event Handler Command Event Handler
Add Submit
Yes No o Ves
another another
Buffer Command
Y
Close Client

a It is not necessary to close and reopen the client between multiple transfers.
Note:

An application using the buffered functionality needs to perform the following steps:
1. The system should have completed necessary setup and initializations.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 111

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

. The 12S Driver object should have been initialized by calling DRV_I2S_Initialize.

. The SPI Driver object should have been initialized by calling DRV_SPI_Initialize.

. The AK4384 Codec Driver object should be initialized by calling DRV_AK4384_Initialize.

The necessary sampling rate value should be set up by calling DRV_AK4384_ SamplingRateSet.

. Register buffer event handler for the client handle by calling DRV_AK4384_BufferEventHandlerSet.

. Register command event handler for the client handle by calling DRV_AK4384_CommandEventHandlerSet.
. Submit a command by calling specific command API.

. Add a buffer to initiate the data transfer by calling DRV_AK4384_BufferAddWrite.

10. The submitted command and Audio data processing happens b calling DRV_AK4384_Tasks from SYS_Tasks.
11. Repeat steps 9 through 10 to handle multiple buffer transmission and reception.

12. When the client is done, it can use DRV_AK4384_Close to close the client handle.

Example:
typedef enum

{

APP_STATE_AK4384_OPEN,
APP_STATE_AK4384_SET_COVMAND HANDLER,
APP_STATE_AK4384_SET_BUFFER_HANDLER,
APP_STATE_AK4384_SET_SANMPLI NG_RATE_COMVAND,
APP_STATE_AK4384_ADD_BUFFER,
APP_STATE_AK4384_WAI T_FOR BUFFER_COMPLETE,
APP_STATE_AK4384_BUFFER_COVPLETE

} APP_STATES;

typedef struct

{
DRV_HANDLE handl e;
DRV_AK4384_BUFFER_HANDLE wri t eBuf Handl e;
DRV_AK4384_BUFFER_EVENT_HANDLER buf f er Handl er;
DRV_AK4384_COMVAND_EVENT_HANDLER commandHandl er ;
uintptr_t context;
uint8_t *txbufferbject;
size_t bufferSize;

} APP_AK4384_CLI ENT;

typedef struct
{
/* Application's current state*/
APP_STATES st at e;
/* USART client handle */
APP_AKA4384_CLI ENT ak4384C ient;
} APP_DATA,
APP_DATA appbDat a;
SYS MODULE _OBJ ak4384Dev(nj ect ;
DRV_AK4384_I NI T drvak4384lnit =

{
.nodul el nit.value = SYS_MODULE POWER_RUN_FULL,
.volunme = 120,
.ncl kMbde = DRV_AK4384 MCLK_MODE_MANUAL,
. queueSi zeTransnit = 2,
b

void SYS Initialize(void * data)
{
/*
The SPI nodul e i ndex should be sane as the one used in
initializing the SPI driver.
The SPI nodul e index initialization is redundant
if Inplementation 3 (Described in System Access) is in use.
*/
drvak4384l nit. spi DriverMbdul el ndex = DRV_SPI _| NDEX 0;

/*

The 12S nodul e i ndex should be sane as the one used in
initializing the 12S driver.

*/

drvak4384lnit.i2sDriverModul el ndex = DRV_I 2S_| NDEX 0;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 112

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

ak4384DevObj ect = DRV_AK4384 Initialize(DRV_AKA384_ | NDEX 0, (SYS MODULE INIT *) & drvak4384lnit);
if (SYS_MODULE_OBJ_| NVALI D == ak4384Dev(bj ect) {
/1 Handl e error
}
}

voi d APP_Tasks (void)
{
swi t ch(appDat a. st at e)
{
/* Open the ak4384 client and get an Handle */
case APP_STATE AK4384 OPEN:

{
SYS_STATUS ak4384St at us;
ak4384St at us = DRV_AKA4384_St at us(sysObj ect s. ak4384Dev(hj ect) ;
i f (SYS_STATUS READY == ak4384St at us)
{
/1 This neans the driver can now be opened.
appDat a. ak4384C i ent. handl e = DRV_AK4384_(pen(DRV_AK4384_| NDEX 0, DRV_I O | NTENT_EXCLUSI VE) ;
i f (appDat a. ak4384C i ent. handl e ! = DRV_HANDLE_| NVALI D)
{
appDat a. state = APP_STATE AK4384_SET_COWAND HANDLER;
}
el se
{
SYS DEBUG 0, "Find out what is wong \r\n");
}
}
el se
{
/* Wait for AK4384 to Initialize */
}
}
br eak;

/* Register a conmand event handler */
case APP_STATE AK4384_SET_COWAND HANDLER:

{
DRV_AK4384_ConmmandEvent Handl er Set (appDat a. ak4384C i ent . handl e,
appDat a. ak4384d i ent . conmandHandl er,
appDat a. ak4384C i ent . cont ext);
appDat a. state = APP_STATE_AKA4384_ SET BUFFER_HANDLER,
}
br eak;

/* Register a buffer event handler */
case APP_STATE AK4384_SET_BUFFER_HANDLER:

{
DRV_AK4384_Buf f er Event Handl er Set (appDat a. ak4384C i ent. handl e,
appDat a. ak4384C i ent . buf f er Handl er,
appDat a. ak4384C i ent. cont ext);
appDat a. st ate = APP_STATE_AK4384_SET_SAMPLI NG_RATE_COMVAND;
}
br eak;

/* Submit a set sanpling rate conmand */
case APP_STATE AK4384_SET_SAMPLI NG _RATE_COWMVAND:

{
DRV_AK4384_Sanpl i ngRat eSet (appDat a. ak4384C i ent . handl e, 48000) ;
appDat a. state = APP_STATE_AK4384_ADD BUFFER,

}

br eak;

/* Add the Audio buffer to be transmtted */
case APP_STATE AK4384 ADD BUFFER

{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 113

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

DRV_AK4384_Buf f er AddW it e(appDat a. ak4384C i ent . handl e, &appDat a. ak4384C i ent. writ eBuf Handl e,
appDat a. ak4384d i ent . t xbuf f er Obj ect, appDat a. ak4384C i ent. buf fer Si ze) ;
i f (appDat a. ak4384C i ent. writeBuf Handl e ! = DRV_AK4384_BUFFER_HANDLE | NVALI D)

{
}
el se

{
}

appDat a. state = APP_STATE_AK4384_WAI T_FOR BUFFER COMPLETE;

SYS_DEBUF 0, "Find out what is wong \r\n");

}

br eak;

/* Audio Buffer transm ssion under process */
case APP_STATE _AK4384_\WAI T_FOR_BUFFER_COVPLETE:
{
}

br eak;

/* Audio Buffer transm ssion conpleted */
case APP_STATE AK4384_BUFFER_COVPLETE:

{
/* Add anot her buffer */
appDat a. state = APP_STATE AK4384_ADD BUFFER;
}
br eak;
defaul t:
{
}
br eak;
}
}
voi d APP_AK4384ComrandEvent Handl er (ui ntptr_t context)
{
/1l Last submitted command successful. Take action as needed.
}

voi d APP_AK4384Buf f er Event Handl er (DRV_AK4384_BUFFER_EVENT event,
DRV_AK4384_BUFFER _HANDLE handl e, uintptr_t context)

{
swi tch(event)
{
case DRV_AK4384_ BUFFER_EVENT_COVPLETE:
{
/'l Can set appData.state = APP_STATE AK4384_ BUFFER_COVPLETE;
/| Take Action as needed
}
br eak;
case DRV_AK4384_ BUFFER_EVENT_ ERROR:
{
/'l Take Action as needed
} break;
case DRV_AK4384 BUFFER_EVENT_ABORT:
{
/'l Take Action as needed
} break;
}
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 114

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

voi d SYS Tasks(voi d)

{
DRV_AK4384_Tasks(ak4384Dev(hj ect) ;

APP_Tasks();

Configuring the Library

Macros
Name Description
DRV_AK4384_CLIENTS_NUMBER Sets up the maximum number of clients that can be connected to any
hardware instance.
DRV_AK4384_CONTROL_CLOCK Sets up clock frequency for the control interface (SPI)
DRV_AK4384_INPUT_REFCLOCK Identifies the input REFCLOCK source to generate the MCLK to codec.
DRV_AK4384 INSTANCES_NUMBER Sets up the maximum number of hardware instances that can be supported
DRV_AK4384_TIMER_DRIVER_MODULE_INDEX Identifies the Timer Module Index for custom virtual SPI driver
implementation.
DRV_AK4384_TIMER_PERIOD Identifies the period for the bit bang timer.
DRV_AK4384_BCLK_BIT_CLK_DIVISOR Sets up the BCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1,
and 48K sampling frequency
DRV_AK4384_MCLK_SAMPLE_FREQ_MULTPLIER Sets up the MCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1
and 48K sampling frequency
Description

The configuration of the AK4384 Codec Driver is based on the file syst em confi g. h.

This header file contains the configuration selection for the AK4384 Codec Driver. Based on the selections made, the driver may support the
selected features. These configuration settings will apply to all instances of the AK4384 Codec Driver.

This header can be placed anywhere, the path of this header needs to be present in the include search path for a successful build. Refer to the
Applications Help section for more details.

DRV_AK4384 CLIENTS_NUMBER Macro

Sets up the maximum number of clients that can be connected to any hardware instance.
File

drv_ak4384_config_template.h
C

#define DRV_AK4384 CLI ENTS NUVBER DRV_AK4384 | NSTANCES NUVBER

Description

AK4384 Client Count Configuration

Sets up the maximum number of clients that can be connected to any hardware instance. Typically only one client could be connected to one
hardware instance. This value represents the total number of clients to be supported across all hardware instances. Therefore, if there are five
AK4384 hardware interfaces, this number will be 5.

Remarks

None.

DRV_AK4384_CONTROL_CLOCK Macro
Sets up clock frequency for the control interface (SPI)
File
drv_ak4384_config_template.h

C
#def i ne DRV_AK4384_ CONTROL_CLOCK

Description
AK4384 Control Interface Clock Speed configuration

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 115

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Sets up clock frequency for the control interface (SPI). The maximum value supported is 5SMHZ.

Remarks

1. This Macro is useful only when a hardware SPI module is not available(used) or a virtual SPI driver is not available(used) for the control
interface to the AK4384 CODEC.

2. This constant needs to defined only for a bit banged implementation of control interface with in the driver.

DRV_AK4384 INPUT_REFCLOCK Macro

Identifies the input REFCLOCK source to generate the MCLK to codec.
File

drv_ak4384_config_template.h
C

#defi ne DRV_AK4384_| NPUT_REFCLOCK

Description

AK4384 Input reference clock
Identifies the input REFCLOCK source to generate the MCLK to codec.

Remarks

None.

DRV_AK4384 INSTANCES_NUMBER Macro

Sets up the maximum number of hardware instances that can be supported
File

drv_ak4384_config_template.h
C

#defi ne DRV_AK4384 | NSTANCES NUMBER

Description

AK4384 driver objects configuration

Sets up the maximum number of hardware instances that can be supported. It is recommended that this number be set exactly equal to the
number of AK4384 CODEC modules that are needed by the application. Hardware Instance support consumes RAM memory space. If this macro
is not defined, then the driver will be built statically.

Remarks

None.

DRV_AK4384_TIMER_DRIVER_MODULE_INDEX Macro
Identifies the Timer Module Index for custom virtual SPI driver implementation.
File
drv_ak4384_config_template.h

C
#def i ne DRV_AK4384_TI MER DRI VER_MODULE_| NDEX
Description
AK4384 Timer Module Index
Identifies the Timer Module Index for custom virtual SPI driver implementation. The AK4384 uses SPI protocol for control interface. The Timer
Module Index is needed by AK4384 driver to implement a virtual SPI driver for control command exchange with the AK4384 CODEC.
Remarks

1. This Macro is useful only when a hardware SPI module is not available(used) or a virtual SPI driver is not available(used) for the control
interface to the AK4384 CODEC.

2. This constant needs to defined only for a bit banged implementation of control interface with in the driver.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 116

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

DRV_AK4384 TIMER_PERIOD Macro
Identifies the period for the bit bang timer.
File
drv_ak4384_config_template.h

C
#def i ne DRV_AK4384 Tl MER_PERI OD
Description
AK4384 Timer Period
Identifies the period for the bit bang timer after which the timer interrupt should occur. The value assigned should align with the expected control
interface clock defined by AK4384_CONTROL_CLOCK.
Remarks

1. This Macro is useful only when a hardware SPI module is not available(used) or a virtual SPI driver is not available(used) for the control
interface to the AK4384 CODEC.

2. This constant needs to defined only for a bit banged implementation of control interface with in the driver.

DRV_AK4384 BCLK_BIT_CLK_DIVISOR Macro

Sets up the BCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1, and 48K sampling frequency
File

drv_ak4384_config_template.h
C

#defi ne DRV_AK4384 BCLK BI T_CLK DI VI SOR

Description

AK4384 BCLK to LRCK Ratio to Generate Audio Stream
Sets up the BCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1 and 48K I12S sampling frequency

Following BCLK to LRCK ratios are supported 16bit LSB Justified >=32fs 20bit LSB Justified >=40fs 24bit MSB Justified >=48fs 24bit 12S
Compatible >=48fs 24bit LSB Justified >=48fs

Typical values for the divisor are 1,2,4 and 8

Remarks

None.

DRV_AK4384 MCLK_SAMPLE_FREQ_MULTPLIER Macro

Sets up the MCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1 and 48K sampling frequency
File

drv_ak4384_config_template.h
C

#define DRV_AK4384 NMCLK_SAMPLE_FREQ MULTPLI ER

Description

AK4384 MCLK to LRCK Ratio to Generate Audio Stream
Sets up the MCLK to LRCK Ratio to Generate Audio Stream for 32, 44.1, and 48K 12S sampling frequency

Supported MCLK to LRCK Ratios are as below 256fs, 384fs, 512fs, 768fs or 1152fs [Normal Speed Mode(8kHz~48kHz)] 128fs, 192fs, 256fs or
384fs [Double Speed Mode(60kHz~96kHz)] 128fs, 192fs [Quad Speed Mode(120kHz~192kHz)]

Remarks

None

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 117

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Configuring the MHC
Provides examples on how to configure the MPLAB Harmony Configurator (MHC) for a specific driver.

Description
The following three figures show examples of MHC configurations for the AK4384 Codec Driver, I12S Driver, and the Timer Driver.
Figure 1: AK4384 Codec Driver MHC Configuration

[=}-CODEC
=) [¥] Use Codec AK43842

Driver Implementation | DYNAMIC v
~-Volume for the DAC in the range 0 (Min) - 255(Max) |120
- [] specify MCLK value
~-Number of AK4384 Driver Clients |1
(= || Use Bit Banged SPI Control Interface?
=) [] Codec AK4384 Driver Instance 0

~Timer driver(used for bit banging) instance 1

12S driver(used for data interface) instance DRV_I2S_INDEX_0 ¥

Figure 2: 12S Driver MHC Configuration

=128
=) [¥] Use 125 Driver?
i-Driver Implementation | DYNAMIC v
&[] DMA Mode
- [¥| Transmit DMA Support
h [:| Receive DMA Support
~["] use DMA Channel Chaining?
: Enable DMA Channel Interrupts?
w[] stop in Idle Mode
“-Sampling Rate 48000
~MCLK Sampling Rate Multiplier | 256
Master Clock\Bit Clock Ratio 4 v
~Number of 12S Driver Instances 1
Number of 12S Driver Clients |1
[=- |+ 12S Driver Instance 0
12S Module ID |SPL_ID_1 v
Usage Mode DRV_I2S_MODE_MASTER W
~Baud Clock |SPI_BAUD_RATE_MCLK_CLOCK ~
Clock Mode |DRV_I2S_CLOCK_MODE_IDLE_HIGH_EDGE_FALL
~-Audio Communication Width | SPI_AUDIO_COMMUNICATION_16DATA_16FIFO_32CHANNEL ¥
Audio Mode | SPI_AUDIO_TRANSMIT_STEREO v
~Input Sample Phase Selection |SPI_INPUT_SAMPLING_PHASE_IN_MIDDLE ¥
Audio Protocol Mode DRV_I2S_AUDIO_RIGHT _JUSTIFIED w
~Queue Size Transmit |3
Queue Size Receive 2
~Transmit DMA Channel Instance 0
Power State | SYS_MODULE_POWER_RUN_FULL ¥

Figure 3: Timer Driver MHC Configuration

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 118

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

=}-Timer

= [¥| use Timer Driver?

Driver Implementation DYNAMIC v

Number of Clients |1

[¥] Interrupt Mode

Number of Timer Driver Instances 3

+} [7| TMR Driver Instance 0

=+ [¥| TMR Driver Instance 1
Timer Module ID TMR_ID_2 v

~Interrupt Priority INT_PRIORITY_LEVEL1 v
Interrupt Sub-priority INT_SUBPRIORITY_LEVELO ¥

~-Clock Source DRV_TMR_CLKSOURCE_INTERNAL v
Prescale TMR_PRESCALE_VALUE_1 ¥

~~Operation Mode |[DRV_TMR_OPERATION_MODE_16_BIT ¥
["] Asynchrounous Write Mode Enable

~-Power State |SYS_MODULE_POWER_RUN_FULL

+-[¥] TMR Driver Instance 2

Tainh

Building the Library
This section lists the files that are available in the AK4384 Codec Driver Library.

Description

This section list the files that are available in the / sr ¢ folder of the AK4384 Codec Driver. It lists which files need to be included in the build based
on either a hardware feature present on the board or configuration option selected by the system.

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/driver/codec/ ak4384.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description
/drv_ak4384. h Header file that exports the driver API.

Required File(s)

- MHc All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC

- when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/'src/dynami c/ drv_ak4384_bit_banged_control _i nterface. c | This file contains implementation of the AK4384 Codec Driver with a
custom bit-banged implementation for control interface driver.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description
/'src/dynam c/drv_ak4384_virtual _control _interface. c | This file contains implementation of the AK4384 Codec Driver with a
virtual SPI driver as control interface driver.
Note: This file is currently unsupported.

/ src/dynam c/ drv_ak4384. c This file contains the core implementation of the AK4384 Codec Driver

Note: This file currently unsupported.

Module Dependencies

The AK4384 Driver Library depends on the following modules:
e 12S Driver Library

* SPI Driver Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 119

Volume V: MPLAB Harmony Framework

Timer Driver Library

Library Interface

a) System Interaction Functions

v

Name
DRV_AK4384 _Initialize

DRV_AK4384_Deinitialize

DRV_AK4384_Status

DRV_AK4384_Tasks

Driver Libraries Help

Description

Initializes hardware and data for the instance of the AK4384 DAC module.

Implementation: Dynamic

Deinitializes the specified instance of the AK4384 driver module.
Implementation: Dynamic

Gets the current status of the AK4384 driver module.
Implementation: Dynamic

Maintains the driver's control and data interface state machine.
Implementation: Dynamic

DRV_AK4384_SetAudioCommunicationMode This function provides a run time audio format configuration

b) Client Setup Functions

Name Description

DRV_AK4384_Open

Opens the specified AK4384 driver instance and returns a handle to it.

Implementation: Dynamic

DRV_AK4384_Close

Closes an opened-instance of the AK4384 driver.

Implementation: Dynamic

c) Codec Specific Functions

Name

DRV_AK4384_ChannelOutputinvertDisable

DRV_AK4384_ChannelOutputinvertEnable

DRV_AK4384_DeEmphasisFilterSet

DRV_AK4384_MuteOff

DRV_AK4384_MuteOn

DRV_AK4384_SamplingRateGet

DRV_AK4384_SamplingRateSet

DRV_AK4384_SlowRollOffFilterDisable

DRV_AK4384_SlowRollOffFilterEnable

DRV_AK4384_VolumeGet

DRV_AK4384_VolumeSet

DRV_AK4384_ZeroDetectDisable

DRV_AK4384_ZeroDetectEnable

DRV_AK4384_ZeroDetectInvertDisable

DRV_AK4384_ZeroDetectlnvertEnable

DRV_AK4384_ZeroDetectModeSet

© 2013-2017 Microchip Technology Inc.

Description

Disables output polarity of the selected Channel.
Implementation: Dynamic

Enables output polarity of the selected channel.
Implementation: Dynamic

Allows specifies enabling of digital de-emphasis filter.
Implementation: Dynamic

Disables AK4384 output for soft mute.

Implementation: Dynamic

Allows AK4384 output for soft mute on.

Implementation: Dynamic

This function gets the sampling rate set on the DAC AK4384.
Implementation: Dynamic

This function sets the sampling rate of the media stream.
Implementation: Dynamic

Disables Slow Roll-off filter function.

Implementation: Dynamic

Enables Slow Roll-off filter function.

Implementation: Dynamic

This function gets the volume for AK4384 Codec.
Implementation: Dynamic

This function sets the volume for AK4384 Codec.
Implementation: Dynamic

Disables AK4384 channel-independent zeros detect function.
Implementation: Dynamic

Enables AK4384 channel-independent zeros detect function.
Implementation: Dynamic

Disables inversion of polarity for zero detect function.
Implementation: Dynamic

Enables inversion of polarity for zero detect function.
Implementation: Dynamic

Sets mode of AK4384 channel-independent zeros detect function.
Implementation: Dynamic

MPLAB Harmony v2.06

Codec Driver Libraries

120

Volume V: MPLAB Harmony Framework

d) Data Transfer Functions

Name
@ DRV_AK4384 BufferAddWrite
¢ DRV_AK4384_BufferEventHandlerSet
¢ DRV_AK4384_BufferCombinedQueueSizeGet
¢ DRV_AK4384_BufferQueueFlush
¢ DRV_AK4384_BufferProcessedSizeGet

e) Other Functions

Driver Libraries Help Codec Driver Libraries

Description
Schedule a non-blocking driver write operation.
Implementation: Dynamic

This function allows a client to identify a buffer event handling function for the driver

to call back when queued buffer transfers have finished.

Implementation: Dynamic

This function returns the number of bytes queued (to be processed) in the buffer
queue.

Implementation: Dynamic

This function flushes off the buffers associated with the client object.
Implementation: Dynamic

This function returns number of bytes that have been processed for the specified
buffer.

Implementation: Dynamic

Name Description

¢ DRV_AK4384_CommandEventHandlerSet Th

is function allows a client to identify a command event handling function for the

driver to call back when the last submitted command have finished.

Implementation: Dynamic

L] DRV_AK4384_VersionGet Returns the version of the AK4384 driver.
Implementation: Dynamic

¢ DRV_AK4384_VersionStrGet Returns the version of AK4384 driver in string format.
Implementation: Dynamic

f) Data Types and Constants

Name
DRV_AK4384_AUDIO_DATA_FORMAT
DRV_AK4384 BUFFER_EVENT
DRV_AK4384 BUFFER_EVENT_HANDLER
DRV_AK4384 BUFFER_HANDLE
DRV_AK4384 CHANNEL
DRV_AK4384 COMMAND_EVENT_HANDLE
DRV_AK4384_DEEMPHASIS_FILTER
DRV_AK4384_INIT

DRV_AK4384 MCLK_MODE
DRV_AK4384_ZERO_DETECT_MODE
DRV_AK4384_ BUFFER_HANDLE_INVALID
DRV_AK4384_COUNT
DRV_AK4384_INDEX_0
DRV_AK4384_INDEX_1

DRV_AK4384 INDEX_2

DRV_AK4384 INDEX_3
DRV_AK4384_INDEX_4
DRV_AK4384_INDEX_5

Description

Description
Identifies the Serial Audio data interface format.
Identifies the possible events that can result from a buffer add request.
Pointer to a AK4384 Driver Buffer Event handler function.
Handle identifying a write buffer passed to the driver.
Identifies Left/Right Audio channel
R Pointer to a AK4384 Driver Command Event Handler Function
Identifies de-emphasis filter function.
Defines the data required to initialize or reinitialize the AK4384 driver.
Identifies the mode of master clock to AK4384 DAC.
Identifies Zero Detect Function mode
Definition of an invalid buffer handle.
Number of valid AK4384 driver indices.
AK4384 driver index definitions.
This is macro DRV_AK4384 INDEX_1.
This is macro DRV_AK4384_INDEX_2.
This is macro DRV_AK4384_INDEX_3.
This is macro DRV_AK4384_INDEX_4.
This is macro DRV_AK4384_INDEX_5.

This section describes the API functions of the AK4384 Codec Driver library.

Refer to each section for a detailed description.

a) System Interaction Functions

DRV_AKA4384 Initialize Function

Initializes hardware and data for the instance of the AK4384 DAC module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

121

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Implementation: Dynamic
File
drv_ak4384.h

C
SYS_MODULE_OBJ DRV_AK4384 | nitialize(const SYS MODULE | NDEX drvlndex, const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to a driver instance object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.
Description
This routine initializes the AK4384 driver instance for the specified driver index, making it ready for clients to open and use it. The initialization data
is specified by the 'init' parameter. The initialization may fail if the number of driver objects allocated are insufficient or if the specified driver
instance is already initialized.
Remarks

This routine must be called before any other AK4384 routine is called.

This routine should only be called once during system initialization unless DRV_AK4384_Deinitialize is called to deinitialize the driver instance.
This routine will NEVER block for hardware access.

Preconditions

DRV_I2S_Initialize must be called before calling this function to initialize the data interface of this CODEC driver. DRV_SPI_lInitialize must be
called if SPI driver is used for handling the control interface of this CODEC driver.

Example
DRV_AK4384 INIT init;
SYS_MODULE_OBJ obj ect Handl e;

init.nodul elnit.val ue SYS_MODULE_POWER _RUN_FULL;
init.spiDriverMdul el ndex = DRV_SPI _INDEX_O; // This will be ignored for a custom
/1 control interface driver inplenentation

init.i2sDriverMdul el ndex DRV_I 2S_| NDEX_0;

i

i nit.ncl kMode = DRV_AK4384_MCLK_MODE_MANUAL;

i ni t.audi oDat aFor mat = DRV_AK4384_AUDI O _DATA _FORVAT_24BI T_I 2S;
i ni t.power DownPort Channel = PORT_CHANNEL_G

i

i nit.power DownBitPosition PORTS_BI T_POS_15;

obj ect Handl e = DRV_AK4384_| ni ti al i ze(DRV_AKA4384_0, (SYS_MODULE IN T*)init);
if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)

{
/1 Handl e error

}
Parameters

Parameters Description

drvindex Identifier for the driver instance to be initialized

init Pointer to the data structure containing any data necessary to initialize the hardware. This

pointer may be null if no data is required and default initialization is to be used.

Function

SYS_MODULE_OBJ DRV_AK4384_Initialize

(
const SYS_MODULE_INDEX drvindex,
const SYS_MODULE_INIT *const init

);

DRV_AK4384 Deinitialize Function

Deinitializes the specified instance of the AK4384 driver module.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 122

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

File
drv_ak4384.h
C
voi d DRV_AK4384 Deinitialize(SYS _MODULE OBJ object);
Returns
None.
Description
Deinitializes the specified instance of the AK4384 driver module, disabling its operation (and any hardware). Invalidates all the internal data.
Remarks

Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again. This
routine will NEVER block waiting for hardware.

Preconditions

Function DRV_AK4384 _Initialize should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /1 Returned from DRV_AKA4384 | nitialize
SYS_STATUS st at us;

DRV_AK4384_Deinitialize(object);

status = DRV_AKA4384_Stat us(object);
if (SYS_MODULE_DEI NI TI ALI ZED ! = status)

{
/1 Check again later if you need to know
/1 when the driver is deinitialized.
}
Parameters
Parameters Description
object Driver object handle, returned from the DRV_AK4384_Initialize routine
Function

void DRV_AK4384_Deinitialize(SYS_MODULE_OBJ object)

DRV_AK4384_Status Function

Gets the current status of the AK4384 driver module.
Implementation: Dynamic

File
drv_ak4384.h

C
SYS_STATUS DRV_AK4384_St at us(SYS_MODULE_OBJ obj ect);

Returns
SYS_STATUS_DEINITIALIZED - Indicates that the driver has been deinitialized
SYS_STATUS_READY - Indicates that any previous module operation for the specified module has completed
SYS_STATUS_BUSY - Indicates that a previous module operation for the specified module has not yet completed
SYS_STATUS_ERROR - Indicates that the specified module is in an error state

Description
This routine provides the current status of the AK4384 driver module.

Remarks

A driver can opened only when its status is SYS_STATUS_READY.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 123

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Preconditions

Function DRV_AK4384_Initialize should have been called before calling this function.

Example
SYS_MODULE_OBJ obj ect ; /1 Returned from DRV_AK4384 Initialize
SYS_STATUS ak4384St at us;

ak4384St at us = DRV_AKA4384_St at us(obj ect);
i f (SYS_STATUS_READY == ak4384St at us)

/1 This nmeans the driver can be opened using the
/| DRV_AK4384_Open function.

}
Parameters

Parameters Description

object Driver object handle, returned from the DRV_AK4384_Initialize routine
Function

SYS_STATUS DRV_AK4384_Status(SYS_MODULE_OBJ object)

DRV_AK4384_Tasks Function

Maintains the driver's control and data interface state machine.
Implementation: Dynamic

File
drv_ak4384.h
C
voi d DRV_AK4384_Tasks(SYS_MODULE_OBJ obj ect);
Returns
None.
Description

This routine is used to maintain the driver's internal control and data interface state machine and implement its control and data interface
implementations. This function should be called from the SYS_Tasks function.

Remarks

This routine is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks).
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
Example

SYS _MODULE_0OBJ obj ect ; /'l Returned from DRV_AK4384_Initialize

while (true)

{
DRV_AK4384_Tasks (object);

/'l Do other tasks

}
Parameters

Parameters Description

object Object handle for the specified driver instance (returned from DRV_AK4384 _Initialize)
Function

void DRV_AK4384_Tasks(SYS_MODULE_OBJ object);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 124

Volume V: MPLAB Harmony Framework Driver Libraries Help

DRV_AK4384 SetAudioCommunicationMode Function
This function provides a run time audio format configuration
File
drv_ak4384.h
C
voi d DRV_AKA4384_Set Audi oConmmruni cat i onMbde(DRV_HANDLE handl e, const DATA LENGTH dlI ,
Returns
None
Description
This function sets up audio mode in I2S protocol
Remarks
None.

Preconditions

The DRV_AK4384_|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Codec Driver Libraries

const SAMPLE LENGTH sl);

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
dl Data length for 12S audio interface
sl Left/Right Sample Length for I2S audio interface
Function

void DRV_AK4384_SetAudioCommunicationMode

(
DRV_HANDLE handle,

const DATA _LENGTHdI,
const SAMPLE_LENGTH sl

)

b) Client Setup Functions

DRV_AK4384_Open Function

Opens the specified AK4384 driver instance and returns a handle to it.
Implementation: Dynamic

File
drv_ak4384.h
C

DRV_HANDLE DRV_AK4384_Open(const SYS MODULE | NDEX i Driver, const DRV_IO_ | NTENT iolntent);

Returns

If successful, the routine returns a valid open-instance handle (a number identifying both the caller and the module instance).

If an error occurs, the return value is DRV_HANDLE_INVALID. Errors can occur under following conditions:
« if the number of client objects allocated via DRV_AK4384_CLIENTS_NUMBER is insufficient

« if the client is trying to open the driver but driver has been opened exclusively by another client

 if the driver hardware instance being opened is not initialized or is invalid

« if the iolntent options passed are not relevant to this driver

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

125

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Description

This routine opens the specified AK4384 driver instance and provides a handle that must be provided to all other client-level operations to identify
the caller and the instance of the driver. The iolntent parameter defines how the client interacts with this driver instance.

The DRV_IO_INTENT_BLOCKING and DRV_IO_INTENT_NONBLOCKING iolntent options are not relevant to this driver. All the data transfer
functions of this driver are non blocking.

Only DRV_IO_INTENT_WRITE is a valid iolntent option as AK4384 is DAC only.

Specifying a DRV_IO_INTENT_EXCLUSIVE will cause the driver to provide exclusive access to this client. The driver cannot be opened by any
other client.

Remarks

The handle returned is valid until the DRV_AK4384_Close routine is called. This routine will NEVER block waiting for hardware.If the requested
intent flags are not supported, the routine will return DRV_HANDLE_INVALID. This function is thread safe in a RTOS application. It should not be
called in an ISR.

Preconditions
Function DRV_AK4384_|Initialize must have been called before calling this function.
Example

DRV_HANDLE handl e;

handl e = DRV_AK4384_Cpen(DRV_AKA4384_| NDEX_0, DRV_| O | NTENT_EXCLUSI VE) ;
i f (DRV_HANDLE | NVALI D == handl e)

{
/1 Unable to open the driver
/1 May be the driver is not initialized or the initialization
/'l is not conplete.
}
Parameters
Parameters Description
drvindex Identifier for the object instance to be opened
iolntent Zero or more of the values from the enumeration DRV_IO_INTENT "ORed" together to
indicate the intended use of the driver. See function description for details.
Function

DRV_HANDLE DRV_AK4384_Open

(
const SYS_MODULE_INDEX drvindex,

const DRV_IO_INTENT iolntent
)

DRV_AK4384 Close Function

Closes an opened-instance of the AK4384 driver.
Implementation: Dynamic

File
drv_ak4384.h
C
voi d DRV_AK4384_Cl ose(const DRV_HANDLE handl e);
Returns
None.
Description

This routine closes an opened-instance of the AK4384 driver, invalidating the handle. Any buffers in the driver queue that were submitted by this
client will be removed. After calling this routine, the handle passed in "handle" must not be used with any of the remaining driver routines. A new
handle must be obtained by calling DRV_AK4384_Open before the caller may use the driver again

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 126

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Remarks

Usually there is no need for the driver client to verify that the Close operation has completed. The driver will abort any ongoing operations when
this routine is called.

Preconditions

The DRV_AK4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example
DRV_HANDLE handl e; // Returned from DRV_AK4384 QOpen

DRV_AK4384_d ose(handl e);

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_Close(DRV_Handle handle)

¢) Codec Specific Functions

DRV_AK4384 ChannelOutputinvertDisable Function

Disables output polarity of the selected Channel.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AKA4384_Channel Cut put | nvert Di sabl e(DRV_HANDLE handl e, DRV_AK4384_CHANNEL chan);
Returns

None.
Description

This function disables output polarity of the selected Channel.
Remarks

None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Channel CQut put | nvert Di sabl e(nyAK4384Handl e, DRV_AK4384_CHANNEL_LEFT);

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
chan Left or Right channel

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 127

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Function
void DRV_AK4384_ChannelOutputinvertDisable(DRV_HANDLE handle, DRV_AK4384_CHANNEL chan)

DRV_AK4384_ChannelOutputinvertEnable Function

Enables output polarity of the selected channel.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AKA4384_Channel Cut put | nvert Enabl e(DRV_HANDLE handl e, DRV_AK4384_CHANNEL chan);
Returns

None.
Description

This function enables output polarity of the selected channel.
Remarks

None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Channel CQut put | nvert Enabl e(nyAK4384Handl e, DRV_AK4384_CHANNEL_LEFT);

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
chan Left or Right channel

Function

void DRV_AK4384_ChannelOutputinvertEnable(DRV_HANDLE handle, DRV_AK4384_CHANNEL chan)

DRV_AK4384_DeEmphasisFilterSet Function

Allows specifies enabling of digital de-emphasis filter.
Implementation: Dynamic

File
drv_ak4384.h

C
voi d DRV_AK4384_DeEnphasi sFil ter Set (DRV_HANDLE handl e, DRV_AK4384_DEEMPHASI S FILTER filter);

Returns

None.

Description
This function allows specifies enabling of digital de-emphasis for 32, 44.1 or 48 kHz sampling rates (tc = 50/15 ps)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 128

Volume V: MPLAB Harmony Framework Driver Libraries Help

Remarks
None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_DeEnphasi sFi | t er Set (nyAK4384Handl e, DRV_AK4384 DEEMPHAS| S_FI LTER 44_1KHZ)

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
filter Specifies Enable of de-emphasis filter

Function

void DRV_AK4384_DeEmphasisFilterSet

(
DRV_HANDLE handle,
DRV_AK4384_DEEMPHASIS_FILTER filter

DRV_AK4384 MuteOff Function

Disables AK4384 output for soft mute.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Mut e f (DRV_HANDLE handl e) ;
Returns

None.
Description

This function disables AK4384 output for soft mute.
Remarks

None.
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppObj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Mut ef f (nyAK4384Handl e); // AK4384 output soft nute disabled

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

129

Volume V: MPLAB Harmony Framework Driver Libraries Help

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_MuteOff(DRV_HANDLE handle)

DRV_AK4384_MuteOn Function

Allows AK4384 output for soft mute on.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Mut eOn(DRV_HANDLE handl e) ;
Returns

None.
Description

This function Enables AK4384 output for soft mute.
Remarks

None.
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

/'l myAKA384Handl e is the handl e returned
/1 by the DRV_AK4384_Cpen function.

DRV_AK4384_Mut eOn(nyAK4384Handl e); // AK4384 out put soft nuted

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384 MuteOn(DRV_HANDLE handle);

DRV_AK4384 SamplingRateGet Function

This function gets the sampling rate set on the DAC AK4384.
Implementation: Dynamic

File
drv_ak4384.h

C
ui nt 32_t DRV_AK4384_Sanpl i ngRat eGet (DRV_HANDLE handl e) ;

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

130

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Description
This function gets the sampling rate set on the DAC AK4384.

Remarks
None.

Preconditions

The DRV_AK4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example
ui nt 32_t baudRat e;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

baudRat e = DRV_AKA4384_Sanpl i ngRat eGet (myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

uint32_t DRV_AK4384_SamplingRateGet(DRV_HANDLE handle)

DRV_AK4384_SamplingRateSet Function

This function sets the sampling rate of the media stream.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Sanpl i ngRat eSet (DRV_HANDLE handl e, uint32_t sanplingRate);
Returns

None.
Description

This function sets the media sampling rate for the client handle.
Remarks

None.
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.
Example
/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_ Open function.

DRV_AK4384_Sanpl i ngRat eSet (myAK4384Handl e, 48000); //Sets 48000 nedia sanpling rate

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
baudRate Baud Rate to be set

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 131

Volume V: MPLAB Harmony Framework Driver Libraries Help

Function
void DRV_AK4384_SamplingRateSet(DRV_HANDLE handle, uint32_t samplingRate)

DRV_AK4384_SlowRollOffFilterDisable Function

Disables Slow Roll-off filter function.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AKA4384_S| owRol | O f Fi | t er Di sabl e(DRV_HANDLE handl e) ;
Returns

None.
Description

This function disables Slow Roll-off filter function. Sharp Roll-off filter function gets enabled.
Remarks

None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Sl owRol | O f Fi | t er Di sabl e(myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_SlowRollOffFilterDisable(DRV_HANDLE handle);

DRV_AK4384_ SlowRollOffFilterEnable Function

Enables Slow Roll-off filter function.
Implementation: Dynamic

File
drv_ak4384.h

C
voi d DRV_AK4384_Sl owRol | OfF f Fi | t er Enabl e(DRV_HANDLE handl e) ;

Returns

None.

Description

This function enables Slow Roll-off filter function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

132

Volume V: MPLAB Harmony Framework Driver Libraries Help

Remarks
None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_SI owRol | O f Fi | t er Enabl e(myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_SlowRollOffFilterEnable(DRV_HANDLE handle);

DRV_AK4384_VolumeGet Function

This function gets the volume for AK4384 Codec.
Implementation: Dynamic

File
drv_ak4384.h
C
uint8_t DRV_AK4384_Vol umeGet (DRV_HANDLE handl e, DRV_AK4384_CHANNEL chan);
Returns
None.
Description
This functions gets the current volume programmed to the DAC AK4384.
Remarks
None.
Preconditions
The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.
Example

/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppQbj ;
uint8_t vol une;

/'l myAKA384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

vol ume = DRV_AK4384_Vol umeCet (myAK4384Handl e, DRV_AK4384_CHANNEL_LEFT_RI GHT) ;

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
chan Audio channel volume to get.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

133

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Function
uint8_t DRV_AK4384_VolumeGet(DRV_HANDLE handle, DRV_AK4384_ CHANNEL chan)

DRV_AK4384 VolumeSet Function

This function sets the volume for AK4384 Codec.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Vol uneSet (DRV_HANDLE handl e, DRV_AK4384_CHANNEL chan, uint8_t vol une);
Returns

None.
Description

This functions sets the volume value from 0-255, which can attenuate from 0 dB to —48 dB and mute.
Remarks

None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Vol uneSet (nyAK4384Handl e, DRV_AK4384_CHANNEL_LEFT_RI GHT, 120); //Step 120 vol une

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine

chan Audio channel volume to be set

volume volume value from 0-255, which can attenuate from 0 dB to —48 dB and mute
Function

void DRV_AK4384_VolumeSet(DRV_HANDLE handle, DRV_AK4384_CHANNEL chan, uint8_t volume)

DRV_AK4384_ZeroDetectDisable Function

Disables AK4384 channel-independent zeros detect function.
Implementation: Dynamic

File
drv_ak4384.h
C
voi d DRV_AKA4384_Zer oDet ect Di sabl e(DRV_HANDLE handl €) ;
Returns
None.
Description

This function disables AK4384 channel-independent zeros detect function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 134

Volume V: MPLAB Harmony Framework Driver Libraries Help

Remarks
None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_Zer oDet ect Di sabl e(myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_ZeroDetectDisable(DRV_HANDLE handle)

DRV_AK4384_ZeroDetectEnable Function

Enables AK4384 channel-independent zeros detect function.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Zer oDet ect Enabl e(DRV_HANDLE handl e) ;
Returns

None.
Description

This function enables AK4384 channel-independent zeros detect function.
Remarks

None.
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppQbj ;

/'l myAKA384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_Zer oDet ect Enabl e(nyAK4384Handl e) ;

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

135

Volume V: MPLAB Harmony Framework Driver Libraries Help

Function
void DRV_AK4384_ZeroDetectEnable(DRV_HANDLE handle)

DRV_AK4384 ZeroDetectIinvertDisable Function

Disables inversion of polarity for zero detect function.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AKA4384_ZeroDet ect | nvert Di sabl e(DRV_HANDLE handl e);
Returns

None.
Description

This function disables inversion of polarity for zero detect function. DZF goes “H” at Zero Detection.
Remarks

None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

DRV_AK4384_Zer oDet ect | nvert Di sabl e(myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_ZeroDetectinvertDisable(DRV_HANDLE handle)

DRV_AK4384 ZeroDetectinvertEnable Function

Enables inversion of polarity for zero detect function.
Implementation: Dynamic

File
drv_ak4384.h

C
voi d DRV_AK4384_Zer oDet ect | nvert Enabl e(DRV_HANDLE handl e) ;

Returns

None.

Description

This function enables inversion of polarity for zero detect function. DZF goes “L” at Zero Detection

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Codec Driver Libraries

136

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Remarks
None.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_Zer oDet ect | nvert Enabl e(myAK4384Handl e) ;

Parameters

Parameters Description

handle A valid open-instance handle, returned from the driver's open routine
Function

void DRV_AK4384_ZeroDetectinvertEnable(DRV_HANDLE handle)

DRV_AK4384_ZeroDetectModeSet Function

Sets mode of AK4384 channel-independent zeros detect function.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AK4384_Zer oDet ect ModeSet (DRV_HANDLE handl e, DRV_AK4384_ZERO DETECT_MODE zdMbde) ;
Returns

None.
Description

This function sets mode of AK4384 channel-independent zeros detect function
Remarks

None.
Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppQbj ;

/'l myAKA384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

DRV_AK4384_Zer oDet ect ModeSet (myAK4384Handl e, DRV_AK4384_ZERO DETECT MODE_ANDED) ;

Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
zdMode Specifies zero detect function mode.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 137

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Function

void DRV_AK4384_ZeroDetectModeSet

(
DRV_HANDLE handle,
DRV_AK4384_ZERO_DETECT_MODE zdMode

d) Data Transfer Functions

DRV_AK4384 BufferAddWrite Function

Schedule a non-blocking driver write operation.
Implementation: Dynamic

File
drv_ak4384.h

C

voi d DRV_AKA4384_Buf fer AddWite(const DRV_HANDLE handl e, DRV_AK4384_BUFFER HANDLE * bufferHandl e, void *
buffer, size_t size);

Returns

The bufferHandle parameter will contain the return buffer handle. This will be DRV_AK4384_BUFFER_HANDLE_INVALID if the function was not
successful.

Description

This function schedules a non-blocking write operation. The function returns with a valid buffer handle in the bufferHandle argument if the write
request was scheduled successfully. The function adds the request to the hardware instance transmit queue and returns immediately. While the
request is in the queue, the application buffer is owned by the driver and should not be modified. The function returns
DRV_AK4384_BUFFER_HANDLE_INVALID if:

« abuffer could not be allocated to the request

» the input buffer pointer is NULL

 the buffer size is '0'

« the queue is full or the queue depth is insufficient

If the requesting client registered an event callback with the driver, the driver will issue a DRV_AK4384_BUFFER_EVENT_COMPLETE event if
the buffer was processed successfully of DRV_AK4384 BUFFER_EVENT_ERROR event if the buffer was not processed successfully.

Remarks

This function is thread safe in a RTOS application. It can be called from within the AK4384 Driver Buffer Event Handler that is registered by this
client. It should not be called in the event handler associated with another AK4384 driver instance. It should not otherwise be called directly in an
ISR.

Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 device instance and the DRV_AK4384_Status must have
returned SYS_STATUS_READY.

DRV_AK4384_Open must have been called to obtain a valid opened device handle.
DRV_IO_INTENT_WRITE must have been specified in the DRV_AK4384_Open call.

Example

MY_APP_OBJ nyAppj ;
uint8_t mybuffer[My_BUFFER_SI ZE] ;
DRV_AK4384_BUFFER_HANDLE buf f er Handl e;

/'l myAK4384Handl e is the handl e returned
/1 by the DRV_AK4384_Open function.

/1 Cient registers an event handler wth driver

DRV_AK4384_Buf f er Event Handl er Set (myAK4384Handl e,
APP_AKA4384Buf f er Event Handl er, (uintptr_t)&myAppoj);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 138

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

DRV_AK4384_Buffer AddWi t e(nyAK4384handl e, &bufferHandl e
nyBuffer, MY_BUFFER S| ZE);

i f (DRV_AK4384 BUFFER HANDLE_| NVALI D == buf f er Handl)
{

}

[/ Error handling here
/1 Event is received when
/'l the buffer is processed.

voi d APP_AKA4384Buf f er Event Handl er (DRV_AK4384_BUFFER_EVENT event,
DRV_AK4384_BUFFER_HANDLE bufferHandl e, uintptr_t contextHandl e)

{
/1 contextHandl e points to nyAppQbj .
swi tch(event)
{
case DRV_AK4384_BUFFER_EVENT_COWPLETE:
/1 This nmeans the data was transferred.
br eak;
case DRV_AKA4384_BUFFER_EVENT_ERROR:
/'l Error handling here.
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the AK4384 instance as return by the DRV_AK4384_Open function.
buffer Data to be transmitted.
size Buffer size in bytes.
bufferHandle Pointer to an argument that will contain the return buffer handle.
Function

void DRV_AK4384_BufferAddWrite

(
const DRV_HANDLE handle,

DRV_AK4384_BUFFER_HANDLE *bufferHandle,
void *buffer, size_t size

)

DRV_AK4384_BufferEventHandlerSet Function

This function allows a client to identify a buffer event handling function for the driver to call back when queued buffer transfers have finished.

Implementation: Dynamic
File
drv_ak4384.h

C

voi d DRV_AKA4384_Buf f er Event Handl er Set (DRV_HANDLE handl e, const DRV_AK4384_ BUFFER_EVENT_HANDLER
event Handl er, const uintptr_t contextHandle);

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 139

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Description

This function allows a client to identify a buffer event handling function for the driver to call back when queued buffer transfers have finished. When
a client calls DRV_AK4384_BufferAddWrite function, it is provided with a handle identifying the buffer that was added to the driver's buffer queue.
The driver will pass this handle back to the client by calling "eventHandler" function when the buffer transfer has completed.

The event handler should be set before the client performs any "buffer add" operations that could generate events. The event handler once set,
persists until the client closes the driver or sets another event handler (which could be a "NULL" pointer to indicate no callback).

Remarks

If the client does not want to be notified when the queued buffer transfer has completed, it does not need to register a callback.
Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified AK4384 driver instance.

DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example

MY_APP_OBJ nyAppOhj ;
uint8_t mybuffer[M\v_BUFFER_SI ZE] ;
DRV_AK4384 BUFFER HANDLE buf f er Handl €;

/'l myAK4A384Handl e is the handl e returned
/1 by the DRV_AK4384_Cpen function.

/1 Client registers an event handler wth driver

DRV_AK4384_Buf f er Event Handl er Set (myAK4384Handl e,
APP_AKA4384Buf f er Event Handl er, (uintptr_t)&wApphj);

DRV_AK4384_Buf f er AddW i t e(nyAK4384handl e, &bufferHandl e
myBuf f er, MY_BUFFER_SI ZE) ;

i f (DRV_AK4384 BUFFER HANDLE_| NVALI D == buf f er Handl e)
{

}

/1 Error handling here
/'l Event is received when
/'l the buffer is processed.

voi d APP_AK4384Buf f er Event Handl er (DRV_AK4384_BUFFER_EVENT event,
DRV_AK4384_BUFFER_HANDLE bufferHandl e, uintptr_t contextHandl e)

{
/'l contextHandl e points to nyAppQbj .
switch(event)
{
case DRV_AK4384_BUFFER_EVENT_COVWPLETE:
/1 This neans the data was transferred.
br eak;
case DRV_AK4384_BUFFER_EVENT_ERROR:
/1 Error handling here.
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine
eventHandler Pointer to the event handler function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 140

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

context The value of parameter will be passed back to the client unchanged, when the eventHandler

function is called. It can be used to identify any client specific data object that identifies the
instance of the client module (for example, it may be a pointer to the client module's state

structure).
Function

void DRV_AK4384_BufferEventHandlerSet
(

DRV_HANDLE handle,
const DRV_AK4384_BUFFER_EVENT_HANDLER eventHandler,
const uintptr_t contextHandle
)

DRV_AK4384_BufferCombinedQueueSizeGet Function

This function returns the number of bytes queued (to be processed) in the buffer queue.
Implementation: Dynamic

File
drv_ak4384.h
C
size_t DRV_AK4384_Buff er Conmbi nedQueueSi zeGet (DRV_HANDLE handl e) ;

Returns
Returns the number of the bytes that have been processed for this buffer. Returns 0 for an invalid or an expired client handle.
Description

This function returns the number of bytes queued (to be processed) in the buffer queue associated with the driver instance to which the calling
client belongs. The client can use this function to know number of bytes that is in the queue to be transmitted.

Remarks
None.

Preconditions

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

One of DRV_AK4384_BufferAddRead/DRV_AK4384_BufferAddWrite function must have been called and buffers should have been queued for

transmission.

Example

/1 myAppObj is an application specific object.
MY_APP_OBJ nyAppObj ;

size_t bufferQeuedSi ze;

uint8_t rmybuffer[My_BUFFER_SI ZE] ;
DRV_AK4384_BUFFER_HANDLE buf f er Handl e;

/'l nmyl2SHandl e is the handl e returned
/'l by the DRV_AK4384_Open function.

/1 Cient registers an event handler with driver. This is done once

DRV_AK4384_Buf f er Event Handl er Set (nyAK4384Handl e, APP_AK4384Buf f er Event Handl e,
(uintptr_t)&myAppQbj) ;

DRV_AK4384_Buf f er AddRead(nyAK4384handl e, &uf f er Handl e,
nyBuf fer, MY_BUFFER S| ZE);

i f (DRV_AK4384 BUFFER_HANDLE_| NVALI D == buf f er Handl e)
{

}

/1 Error handling here

/1 The data is being processed after adding the buffer to the queue.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

141

Volume V: MPLAB Harmony Framework Driver Libraries Help

/1l The user can get to know dynamically available data in the queue to be
/1 transmitted by calling DRV_AK4384 Buf fer Combi nedQueueSi zeGet
buf f er QueuedSi ze = DRV_AK4384_Buf f er Conbi nedQueueSi zeGet (nyAK4384Handl e) ;

Parameters

Parameters Description

handle Opened client handle associated with a driver object.
Function

size_t DRV_AK4384_BufferCombinedQueueSizeGet(DRV_HANDLE handle)

DRV_AK4384 BufferQueueFlush Function

This function flushes off the buffers associated with the client object.
Implementation: Dynamic

File

drv_ak4384.h
C

voi d DRV_AKA4384_Buf f er QueueFl ush(const DRV_HANDLE handl e);
Returns

None.

Description

This function flushes off the buffers associated with the client object and disables the DMA channel used for transmission.

Remarks
None.
Preconditions

The DRV_AK4384_|Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Codec Driver Libraries

One of DRV_AK4384_BufferAddRead/DRV_AK4384_BufferAddWrite function must have been called and buffers should have been queued for

transmission.

Example
/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppQbj ;
size_t bufferQeuedSi ze;
ui nt8_t nybuffer[MY_BUFFER_SI ZE] ;
DRV_AK4384_BUFFER_HANDLE buf f er Handl e;

/'l myAK4A384Handl e is the handl e returned
/1l by the DRV_AK4384_Open function.

/1l Cient registers an event handler with driver. This is done once

DRV_AK4384_Buf f er Event Handl er Set (myAK4384Handl e, APP_AKA4384Buf f er Event Handl e,

(uintptr_t)&nmyAppQbj);

DRV_AK4384_Buf f er AddRead(nyAK4384handl e, &uf f er Handl e,
nyBuffer, MY_BUFFER S| ZE);

i f (DRV_AK4384 BUFFER HANDLE_| NVALI D == buf f er Handl)
{

}

/'l Error handling here

/'l The data is being processed after adding the buffer to the queue.
/'l The user can stop the data processing and flushoff the data

/1 in the queue by calling DRV_AK4384 Buffer QueueFl ush
DRV_AK4384_Buf f er QueueFl ush(nyAK4384Handl e) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

142

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Parameters

Parameters Description

handle Opened client handle associated with a driver object.
Function

void DRV_AK4384_BufferQueueFlush(DRV_HANDLE handle)

DRV_AK4384_BufferProcessedSizeGet Function

This function returns number of bytes that have been processed for the specified buffer.
Implementation: Dynamic

File
drv_ak4384.h
C
size_t DRV_AK4384_Buffer ProcessedSi zeGet (DRV_HANDLE handl e) ;
Returns
Returns the number of the bytes that have been processed for this buffer. Returns 0 for an invalid or an expired buffer handle.

Description

This function returns number of bytes that have been processed for the specified buffer. The client can use this function, in a case where the buffer
has terminated due to an error, to obtain the number of bytes that have been processed. If this function is called on a invalid buffer handle, or if the
buffer handle has expired, the function returns 0.

Remarks

None.

Preconditions

The DRV_AK4384 _|Initialize routine must have been called for the specified I2S driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.
One of DRV_AK4384_BufferAddRead, DRV_AK4384_BufferAddWrite function must have been called and a valid buffer handle returned.

Example

/'l myAppObj is an application specific object.
MY_APP_0OBJ nyAppQbj ;

uint8_t mybuffer[Mv_BUFFER_SI ZE] ;
DRV_AK4384_BUFFER_HANDLE buf f er Handl e;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_COpen function.

/1 Cient registers an event handler with driver. This is done once

DRV_AK4384_Buf f er Event Handl er Set (nyAK4384Handl e, APP_AK4384Buf f er Event Handl e,
(uintptr_t)&myAppQbj) ;

DRV_AK4384_Buf f er AddRead(nyAK4384handl e, &uf f er Handl e,
nmyBuf fer, MY_BUFFER_SI ZE) ;

i f (DRV_AK4384_ BUFFER HANDLE_| NVALI D == buf f er Handl)
{

}

[/ Error handling here
/'l Event Processing Technique. Event is received when
/1 the buffer is processed.

voi d APP_AK4384Buf f er Event Handl er (DRV_AK4384_BUFFER_EVENT event,
DRV_AK4384_BUFFER _HANDLE bufferHandl e, uintptr_t contextHandl e)

{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 143

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

/1 The context handle was set to an application specific

// object. It is nowretrievable easily in the event handler.
MY_APP_0OBJ nyAppOhj = (MY_APP_OBJ *) cont ext Handl e;

size_t processedBytes;

swi tch(event)

{
case DRV_AK4384_BUFFER_EVENT_COWPLETE:
/1 This neans the data was transferred.
br eak;
case DRV_AK4384_BUFFER_EVENT_ERROR:
/1 Error handling here.
/1 We can find out how many bytes were processed in this
/'l buffer before the error occurred.
processedBytes = DRV_AKA4384_Buf f er ProcessedSi zeGet (myAK4384Handl e) ;
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
bufferhandle Handle of the buffer of which the processed number of bytes to be obtained.
Function

size_t DRV_AK4384_BufferProcessedSizeGet(DRV_HANDLE handle)

e) Other Functions

DRV_AK4384 CommandEventHandlerSet Function

This function allows a client to identify a command event handling function for the driver to call back when the last submitted command have
finished.

Implementation: Dynamic
File
drv_ak4384.h

C
voi d DRV_AK4384_CommandEvent Handl er Set (DRV_HANDLE handl e, const DRV_AK4384_COMVAND_ EVENT_HANDLER
event Handl er, const uintptr_t contextHandle);

Returns
None.

Description
This function allows a client to identify a command event handling function for the driver to call back when the last submitted command have
finished.
When a client calls DRV_AK4384_BufferAddWrite function, it is provided with a handle identifying the buffer that was added to the driver's buffer
queue. The driver will pass this handle back to the client by calling "eventHandler" function when the buffer transfer has completed.
The event handler should be set before the client performs any "AK4384 CODEC Specific Client Routines" operations that could generate events.
The event handler once set, persists until the client closes the driver or sets another event handler (which could be a "NULL" pointer to indicate no
callback).

Remarks

If the client does not want to be notified when the command has completed, it does not need to register a callback.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 144

Volume V: MPLAB Harmony Framework

Preconditions

Driver Libraries Help

The DRV_AKA4384_Initialize routine must have been called for the specified AK4384 driver instance.
DRV_AK4384_Open must have been called to obtain a valid opened device handle.

Example
MY_APP_OBJ nyAppQbj ;

/'l myAK4384Handl e is the handl e returned
/'l by the DRV_AK4384_Open function.

/1 Cient registers an event handler wth driver

DRV_AK4384_ConmandEvent Handl er Set (myAK4384Handl e,

APP_AKA4384ComrmandEvent Handl er,
DRV_AK4384_DeEnphasi sFi | t er Set (nyAK4384Handl e,

/'l Event is received when
/1 the buffer is processed.

(uintptr_t)&nyAppQbj);

DRV_AKA4384_DEEMPHASI S_FI LTER 44_1KHZ)

voi d APP_AK4384CommandEvent Handl er (ui nt ptr_t cont ext Handl e)

{
/1 contextHandl e points to nyAppObj .
swi tch(event)
{
/1 Last Submitted command is conpleted.
/1 Performfurther processing here
}
}
Parameters
Parameters Description
handle A valid open-instance handle, returned from the driver's open routine

eventHandler

Pointer to the event handler function.

Codec Driver Libraries

context The value of parameter will be passed back to the client unchanged, when the eventHandler
function is called. It can be used to identify any client specific data object that identifies the
instance of the client module (for example, it may be a pointer to the client module's state
structure).

Function
void DRV_AK4384_CommandEventHandlerSet
(
DRV_HANDLE handle,
const DRV_AK4384_COMMAND_EVENT_HANDLER eventHandler,

const uintptr_t contextHandle

)

DRV_AK4384 VersionGet Function

Returns the version of the AK4384 driver.
Implementation: Dynamic

File
drv_ak4384.h

C
uint32_t DRV_AK4384_VersionGet();

Returns

Returns the version of AK4384 driver.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

145

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Description

The version number returned from the DRV_AK4384_VersionGet function is an unsigned integer in the following decimal format. * 10000 + * 100
+ Where the numbers are represented in decimal and the meaning is the same as above. Note that there is no numerical representation of
release type.

Remarks
None.
Example 1
For version "0.03a", return: 0 * 10000 + 3 * 100 + O For version "1.00", return: 1 * 100000 + 0 * 100 + O

Example 2

ui nt 32_t ak4384versi on;
ak4384versi on = DRV_AK4384_Versi onGet ();

Function
uint32_t DRV_AK4384_VersionGet(void)

DRV_AK4384 VersionStrGet Function

Returns the version of AK4384 driver in string format.
Implementation: Dynamic

File

drv_ak4384.h
C

int8_ t* DRV_AK4384 VersionStrGCet();
Returns

returns a string containing the version of AK4384 driver.

Description

The DRV_AKA4384_VersionStrGet function returns a string in the format: ".[.][I" Where: is the AK4384 driver's version number. is the AK4384
driver's version number. is an optional "patch" or "dot" release number (which is not included in the string if it equals '00'). is an optional release
type (‘a’ for alpha, 'b' for beta not the entire word spelled out) that is not included if the release is a production version (i.e., not an alpha or beta).

The String does not contain any spaces.

Remarks

None.

Preconditions

None.

Example 1
"0.03a" "1.00"

Example 2

int8_t *ak4384string;
ak4384string = DRV_AK4384_VersionStrGet();

Function
int8_t* DRV_AK4384_VersionStrGet(void)

f) Data Types and Constants

DRV_AK4384_AUDIO_DATA_FORMAT Enumeration

Identifies the Serial Audio data interface format.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 146

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

File
drv_ak4384.h
C
typedef enum {
DRV_AK4384_AUDI O DATA FORMAT _16BI T_RI GHT_JUSTI FIED = 0,
DRV_AK4384_AUDI O DATA_FORMAT 20BI T_RI GHT_JUSTI FI ED,
DRV_AK4384_AUDI O DATA FORNMAT 24BI T_LEFT_JUSTI FI ED,
DRV_AK4384_AUDI O DATA FORNMAT 24BI T_I 2S,
DRV_AK4384_ AUDI O DATA_FORMAT 24BI T_RI GHT_JUSTI FI ED
} DRV_AK4384_AUDI O DATA FORMAT;
Members
Members Description
DRV_AK4384 AUDIO_DATA_FORMAT_16BIT_RIGHT_JUSTIFIED 16 bit Right Justified Audio data format
=0
DRV_AK4384_AUDIO_DATA_FORMAT_20BIT_RIGHT_JUSTIFIED 20 bit Right Justified Audio data format
DRV_AK4384_AUDIO_DATA_FORMAT_24BIT_LEFT_JUSTIFIED 24 bit Left Justified Audio data format
DRV_AK4384 AUDIO_DATA_FORMAT 24BIT_I2S 24 bit 12S Audio data format
DRV_AK4384_AUDIO_DATA FORMAT_24BIT_RIGHT_JUSTIFIED 24 bit Right Justified Audio data format
Description
AK4384 Audio data format
This enumeration identifies Serial Audio data interface format.
Remarks

None.

DRV_AK4384 BUFFER_EVENT Enumeration

Identifies the possible events that can result from a buffer add request.
File

drv_ak4384.h

C

typedef enum {
DRV_AK4384_BUFFER_EVENT_COWPLETE,
DRV_AK4384_BUFFER_EVENT_ERROR,
DRV_AK4384_BUFFER_EVENT_ABORT

} DRV_AK4384_BUFFER_EVENT;

Members

Members Description

DRV_AK4384 BUFFER_EVENT_COMPLETE Data was transferred successfully.

DRV_AK4384_BUFFER_EVENT_ERROR Error while processing the request

DRV_AK4384_BUFFER_EVENT_ABORT Data transfer aborted (Applicable in DMA mode)
Description

AK4384 Driver Events

This enumeration identifies the possible events that can result from a buffer add request caused by the client calling either the
DRV_AK4384_BufferAddWrite function.

Remarks

One of these values is passed in the "event" parameter of the event handling callback function that the client registered with the driver by calling
the DRV_AK4384_BufferEventHandlerSet function when a buffer transfer request is completed.

DRV_AK4384 BUFFER_EVENT_HANDLER Type

Pointer to a AK4384 Driver Buffer Event handler function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 147

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

File
drv_ak4384.h

C

typedef void (* DRV_AK4384_BUFFER_EVENT_HANDLER) (DRV_AK4384_BUFFER_EVENT event, DRV_AK4384_BUFFER_HANDLE
buf ferHandl e, uintptr_t contextHandle);

Returns

None.

Description

AK4384 Driver Buffer Event Handler Function

This data type defines the required function signature for the AK4384 driver buffer event handling callback function. A client must register a pointer
to a buffer event handling function whose function signature (parameter and return value types) match the types specified by this function pointer
in order to receive buffer related event calls back from the driver.

The parameters and return values are described here and a partial example implementation is provided.

Remarks

If the event is DRV_AK4384_BUFFER_EVENT_COMPLETE, this means that the data was transferred successfully.

If the event is DRV_AK4384_BUFFER_EVENT_ERROR, this means that the data was not transferred successfully. The bufferHandle parameter
contains the buffer handle of the buffer that failed. The DRV_AK4384_BufferProcessedSizeGet function can be called to find out how many bytes
were processed.

The bufferHandle parameter contains the buffer handle of the buffer that associated with the event.

The context parameter contains a handle to the client context, provided at the time the event handling function was registered using the
DRV_AK4384_BufferEventHandlerSet function. This context handle value is passed back to the client as the "context" parameter. It can be any
value necessary to identify the client context or instance (such as a pointer to the client's data) instance of the client that made the buffer add
request.

The buffer handle in bufferHandle expires after this event handler exits. In that the buffer object that was allocated is deallocated by the driver after
the event handler exits.

The event handler function executes in the data driver (12S) peripheral's interrupt context when the driver is configured for interrupt mode
operation. It is recommended of the application to not perform process intensive or blocking operations with in this function.

DRV_AK4384_BufferAddWrite function can be called in the event handler to add a buffer to the driver queue.

Example

voi d APP_MyBuf f er Event Handl er (DRV_AK4384_BUFFER_EVENT event,
DRV_AK4384_BUFFER_HANDLE buf f er Handl e,
uintptr_t context)

MY_APP_DATA_STRUCT pAppData = (MY_APP_DATA STRUCT) context;

swi tch(event)

{
case DRV_AK4384 BUFFER EVENT COWPLETE:

/1 Handl e the conpl eted buffer.
br eak;

case DRV_AK4384_ BUFFER_EVENT_ERROR:
defaul t:

/1 Handle error.
br eak;

}
Parameters

Parameters Description

event Identifies the type of event

bufferHandle Handle identifying the buffer to which the event relates

context Value identifying the context of the application that registered the event handling function.

DRV_AK4384_BUFFER_HANDLE Type

Handle identifying a write buffer passed to the driver.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 148

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

File
drv_ak4384.h

C
typedef uintptr_t DRV_AK4384 BUFFER HANDLE;

Description
AK4384 Driver Buffer Handle
A buffer handle value is returned by a call to the DRV_AK4384_BufferAddWrite function. This handle is associated with the buffer passed into the
function and it allows the application to track the completion of the data from (or into) that buffer. The buffer handle value returned from the "buffer
add" function is returned back to the client by the "event handler callback" function registered with the driver.
The buffer handle assigned to a client request expires when the client has been notified of the completion of the buffer transfer (after event handler
function that notifies the client returns) or after the buffer has been retired by the driver if no event handler callback was set.

Remarks

None.

DRV_AK4384 CHANNEL Enumeration

Identifies Left/Right Audio channel

File

C

drv_ak4384.h

typedef enum {
DRV_AK4384 CHANNEL LEFT,
DRV_AK4384_ CHANNEL_RI GHT,
DRV_AK4384 CHANNEL_LEFT_RI GHT,
DRV_AK4384 NUMBER OF CHANNELS
} DRV_AK4384_ CHANNEL;

Description

AK4384 Audio Channel
This enumeration identifies Left/Right Audio channel

Remarks

None.

DRV_AK4384_COMMAND_EVENT_HANDLER Type

Pointer to a AK4384 Driver Command Event Handler Function

File
drv_ak4384.h

C
typedef void (* DRV_AK4384_COMWAND_ EVENT_HANDLER) (ui ntptr_t cont ext Handl e);

Returns
None.

Description
AK4384 Driver Command Event Handler Function
This data type defines the required function signature for the AK4384 driver command event handling callback function.
A command is a control instruction to the AK4384 Codec. For example, Mute ON/OFF, Zero Detect Enable/Disable, etc.
A client must register a pointer to a command event handling function whose function signature (parameter and return value types) match the
types specified by this function pointer in order to receive command related event calls back from the driver.
The parameters and return values are described here and a partial example implementation is provided.

Remarks

The occurrence of this call back means that the last control command was transferred successfully.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 149

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

The context parameter contains a handle to the client context, provided at the time the event handling function was registered using the
DRV_AK4384_CommandEventHandlerSet function. This context handle value is passed back to the client as the "context" parameter. It can be
any value necessary to identify the client context or instance (such as a pointer to the client's data) of the client that made the buffer add request.
The event handler function executes in the control data driver interrupt context. It is recommended of the application to not perform process
intensive or blocking operations with in this function.

Example

voi d APP_AK4384ComrandEvent Handl er (uintptr_t context)

{
MY_APP_DATA_STRUCT pAppData = (MY_APP_DATA_STRUCT) context:

/'l Last Submitted conmmand is conpl eted.
/1 Performfurther processing here

}
Parameters
Parameters Description
context Value identifying the context of the application that registered the event handling function.

DRV_AK4384 DEEMPHASIS_FILTER Enumeration
Identifies de-emphasis filter function.

File
drv_ak4384.h

C

typedef enum {
DRV_AK4384_DEEMPHASI S_FI LTER 44_1KHZ,
DRV_AK4384_DEEMPHASI S_FI LTER_OFF,
DRV_AK4384_DEEMPHASI S_FI LTER 48KHZ,
DRV_AK4384_DEEMPHASI S_FI LTER _32KHZ

} DRV_AK4384_DEEMPHASI S_FI LTER,

Members

Members Description
DRV_AK4384_DEEMPHASIS_FILTER_44_1KHZ | De-Emphasis filter for 44.1kHz.
DRV_AK4384_DEEMPHASIS_FILTER_OFF De-Emphasis filter Off This is the default setting.
DRV_AK4384_DEEMPHASIS_FILTER_48KHZ | De-Emphasis filter for 48kHz.
DRV_AK4384_DEEMPHASIS_FILTER_32KHZ | De-Emphasis filter for 32kHz.

Description

AK4384 De-Emphasis Filter

This enumeration identifies the settings for de-emphasis filter function.
Remarks

None.

DRV_AK4384_INIT Structure

Defines the data required to initialize or reinitialize the AK4384 driver.
File

drv_ak4384.h

C

typedef struct {
SYS MODULE_INIT nodul el nit;
SYS_MODULE_| NDEX spi Dri ver Modul el ndex;
SYS_MODULE_I NDEX i 2sDri ver Modul el ndex;
uint8_t vol une;
DRV_AK4384_MCLK_MODE ntl kMbde;
bool delayDriverlnitialization;

} DRV_AK4384_INT;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 150

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Members
Members Description
SYS_MODULE_INIT modulelnit; System module initialization

SYS_MODULE_INDEX spiDriverModulelndex; Identifies control module(SPI) driver ID for control interface of Codec
SYS_MODULE_INDEX i2sDriverModulelndex; Identifies data module(12S) driver ID for data interface of Codec

uint8_t volume; Volume

DRV_AK4384_MCLK_MODE mclkMode; Set MCLK mode.

bool delayDriverlnitialization; true if driver initialization should be delayed due to shared RESET pin
Description

AK4384 Driver Initialization Data
This data type defines the data required to initialize or reinitialize the AK4384 Codec driver.

Remarks

None.

DRV_AK4384_MCLK_MODE Enumeration
Identifies the mode of master clock to AK4384 DAC.
File
drv_ak4384.h

C

typedef enum {
DRV_AK4384_MCLK_MODE_MANUAL,
DRV_AK4384_ MCLK_MODE_AUTO
} DRV_AK4384 MCLK MODE;

Members

Members Description

DRV_AK4384_MCLK_MODE_MANUAL Master clock frequency mode Manual

DRV_AK4384_MCLK_MODE_AUTO Master clock frequency mode Auto This is the default mode.
Description

AK4384 Master clock frequency mode

This enumeration identifies mode of master clock to AK4384 DAC. In Manual Setting Mode, the sampling speed is set by setting DFS0/1 bits in
Control Register 2. The frequency of MCLK at each sampling speed is set automatically. In Auto Setting Mode, the MCLK frequency is detected
automatically

Remarks

None.

DRV_AK4384_ZERO_DETECT_MODE Enumeration
Identifies Zero Detect Function mode

File
drv_ak4384.h

C

typedef enum {
DRV_AK4384_ZERO DETECT_MODE_CHANNEL _SEPARATED,
DRV_AK4384 ZERO DETECT MODE_ANDED

} DRV_AK4384_ ZERO DETECT_MODE;

Members

Members Description

DRV_AK4384_ZERO_DETECT_MODE_CHANNEL_SEPARATED Zero Detect channel separated. When the input data at each channel is
continuously zeros for 8192 LRCK cycles, DZF pin of each channel goes to
“H” This is the default mode.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 151

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

DRV_AK4384_ZERO_DETECT_MODE_ANDED Zero Detect Anded DZF pins of both channels go to “H” only when the input
data at both channels are continuously zeros for 8192 LRCK cycles

Description

AK4384 Zero Detect mode
This enumeration identifies the mode of zero detect function

Remarks

None.

DRV_AK4384_BUFFER_HANDLE_INVALID Macro
Definition of an invalid buffer handle.
File
drv_ak4384.h
C
#def i ne DRV_AK4384 BUFFER HANDLE_| NVALI D ((DRV_AK4384 BUFFER HANDLE) (- 1))

Description

AK4384 Driver Invalid Buffer Handle

This is the definition of an invalid buffer handle. An invalid buffer handle is returned by DRV_AK4384_BufferAddWrite function if the buffer add
request was not successful.

Remarks

None.

DRV_AK4384 _COUNT Macro
Number of valid AK4384 driver indices.
File
drv_ak4384.h
C
#defi ne DRV_AK4384 COUNT

Description

AK4384 Driver Module Count

This constant identifies the maximum number of AK4384 Driver instances that should be defined by the application. Defining more instances than
this constant will waste RAM memory space.

This constant can also be used by the application to identify the number of AK4384 instances on this microcontroller.

Remarks

This value is device-specific.

DRV_AK4384_INDEX_0 Macro
AK4384 driver index definitions.
File
drv_ak4384.h

C
#def i ne DRV_AK4384_| NDEX 0 0

Description

Driver AK4384 Module Index
These constants provide AK4384 driver index definition.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 152

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Remarks

These constants should be used in place of hard-coded numeric literals. These values should be passed into the DRV_AK4384_Initialize and
DRV_AK4384_Open routines to identify the driver instance in use.

DRV_AK4384_INDEX_1 Macro
File
drv_ak4384.h

C
#define DRV_AKA4384_ | NDEX_1 1

Description
This is macro DRV_AK4384_INDEX_1.

DRV_AK4384 INDEX_2 Macro
File
drv_ak4384.h

C
#def i ne DRV_AK4384_| NDEX 2 2

Description
This is macro DRV_AK4384_INDEX_2.

DRV_AK4384_INDEX_3 Macro
File
drv_ak4384.h

C
#define DRV_AKA4384_| NDEX_3 3

Description
This is macro DRV_AK4384_INDEX_3.

DRV_AK4384_INDEX_4 Macro
File
drv_ak4384.h

C
#def i ne DRV_AK4384 | NDEX 4 4

Description
This is macro DRV_AK4384_INDEX_4.

DRV_AK4384_INDEX_5 Macro
File
drv_ak4384.h

C
#define DRV_AKA4384_| NDEX 5 5

Description
This is macro DRV_AK4384_INDEX_5.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 153

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

Files

Files

Name
drv_ak4384.h
drv_ak4384_config_template.h

Description
AK4384 Codec Driver Interface header file
AK4384 Codec Driver Configuration Template.

Description

This section lists the source and header files used by the AK4384Codec Driver Library.

drv_ak4384.h

AK4384 Codec Driver Interface header file

Enumerations

Name

Description

DRV_AK4384_AUDIO_DATA_FORMAT |Identifies the Serial Audio data interface format.

DRV_AK4384 BUFFER_EVENT
DRV_AK4384_CHANNEL
DRV_AK4384_DEEMPHASIS_FILTER
DRV_AK4384_MCLK_MODE

Identifies the possible events that can result from a buffer add request.
Identifies Left/Right Audio channel

Identifies de-emphasis filter function.

Identifies the mode of master clock to AK4384 DAC.

DRV_AK4384_ZERO_DETECT_MODE | Identifies Zero Detect Function mode

Functions
Name Description

¢ DRV_AK4384_BufferAddWrite Schedule a non-blocking driver write operation.
Implementation: Dynamic

¢ DRV_AK4384_BufferCombinedQueueSizeGet This function returns the number of bytes queued (to be processed) in the buffer
queue.
Implementation: Dynamic

¢ DRV_AK4384_BufferEventHandlerSet This function allows a client to identify a buffer event handling function for the driver
to call back when queued buffer transfers have finished.
Implementation: Dynamic

@ DRV_AK4384_BufferProcessedSizeGet This function returns number of bytes that have been processed for the specified
buffer.
Implementation: Dynamic

] DRV_AK4384_BufferQueueFlush This function flushes off the buffers associated with the client object.
Implementation: Dynamic

¢ DRV_AK4384_ChannelOutputinvertDisable | Disables output polarity of the selected Channel.
Implementation: Dynamic

@ DRV_AK4384_ChannelOutputinvertEnable Enables output polarity of the selected channel.
Implementation: Dynamic

L] DRV_AK4384_Close Closes an opened-instance of the AK4384 driver.
Implementation: Dynamic

@ DRV_AK4384_CommandEventHandlerSet This function allows a client to identify a command event handling function for the
driver to call back when the last submitted command have finished.
Implementation: Dynamic

@ DRV_AK4384_DeEmphasisFilterSet Allows specifies enabling of digital de-emphasis filter.
Implementation: Dynamic

¢ DRV_AK4384_Deinitialize Deinitializes the specified instance of the AK4384 driver module.
Implementation: Dynamic

¢ DRV_AK4384 _|Initialize Initializes hardware and data for the instance of the AK4384 DAC module.
Implementation: Dynamic

¢ DRV_AK4384_MuteOff Disables AK4384 output for soft mute.
Implementation: Dynamic

@ DRV_AK4384_MuteOn Allows AK4384 output for soft mute on.

© 2013-2017 Microchip Technology Inc.

Implementation: Dynamic

MPLAB Harmony v2.06 154

Volume V: MPLAB Harmony Framework Driver Libraries Help Codec Driver Libraries

¢ DRV_AK4384_Open Opens the specified AK4384 driver instance and returns a handle to it.

Implementation: Dynamic

¢ DRV_AK4384_SamplingRateGet This function gets the sampling rate set on the DAC AK4384.

Implementation: Dynamic

¢ DRV_AK4384_SamplingRateSet This function sets the sampling rate of the media stream.

Implementation: Dynamic

DRV_AK4384_SetAudioCommunicationMode | This function provides a run time audio format configuration
DRV_AK4384_SlowRollOffFilterDisable Disables Slow Roll-off filter function.

Implementation: Dynamic

¢ DRV_AK4384_SlowRollOffFilterEnable Enables Slow Roll-off filter function.

Implementation: Dynamic

@ DRV_AK4384_Status Gets the current status of the AK4384 driver module.

Implementation: Dynamic

¢ DRV_AK4384_Tasks Maintains the driver's control and data interface state machine.

Implementation: Dynamic

¢ DRV_AK4384_VersionGet Returns the version of the AK4384 driver.

Implementation: Dynamic

@ DRV_AK4384_VersionStrGet Returns the version of AK4384 driver in string format.

Implementation: Dynamic

¢ DRV_AK4384_VolumeGet This function gets the volume for AK4384 Codec.

Implementation: Dynamic

¢ DRV_AK4384_VolumeSet This function sets the volume for AK4384 Codec.

Implementation: Dynamic

¢ DRV_AK4384_ZeroDetectDisable Disables AK4384 channel-independent zeros detect function.

Implementation: Dynamic

¢ DRV_AK4384_ZeroDetectEnable Enables AK4384 channel-independent zeros detect function.

Implementation: Dynamic

¢ DRV_AK4384_ZeroDetectInvertDisable Disables inversion of polarity for zero detect function.

Implementation: Dynamic

@ DRV_AK4384_ZeroDetectlnvertEnable Enables inversion of polarity for zero detect function.

Implementation: Dynamic

¢ DRV_AK4384_ZeroDetectModeSet Sets mode of AK4384 channel-independent zeros detect function.

Macros

Name

DRV_AK4384
DRV_AK4384_
DRV_AK4384_
DRV_AK4384_
DRV_AK4384
DRV_AK4384_
DRV_AK4384_
DRV_AK4384

Structures

Name

DRV_AK4384_

Types

Name

DRV_AK4384
DRV_AK4384_
DRV_AK4384_

Description

Implementation: Dynamic

Description
BUFFER_HANDLE_INVALID Definition of an invalid buffer handle.
COUNT Number of valid AK4384 driver indices.
INDEX_O